Abstrakt
The study’s objective was to determine the spatial and temporal variability of occurrence of extremely warm days in winter in Poland in 1966/67–2020/21, and to determine the effect of atmospheric circulation on their occurrence. An extremely warm day is defined as a day with a maximum daily air temperature equal to or higher than the value of the 95. percentile. The effect of atmospheric circulation on the occurrence of the analyzed days was determined on the basis on two teleconnection patterns, namely the North Atlantic Oscillation (NAO) and Scandinavia (SCAND). The progressing warming translated into increasingly frequent occurrence of extremely warm days. In terms of the abundance of such days, the following winters stood out in the entire multiannual period: 1989/90, 2015/16, 2006/07, and 2001/02.
Bibliografia
Barnston A.G., Livezey R.E., 1987: Classification, seasonality and persistence of low frequency atmospheric circulation patterns. Monthly Weather Review, 115, 1083–1126. DOI: https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
Bednorz E., 2002: Snow cover in western Poland and macro‐scale circulation conditions. International Journal of Climatology, 22 (5), 533–541. DOI: https://doi.org/10.1002/joc.752
Bednorz E., 2009: Wpływ sytuacji barycznych na występowanie pokrywy śnieżnej na obszarach nizinnych środkowej Europy. Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza.
Bueha C., Nakamuta H., 2007: Scandinavian pattern and its climatic impact. Quarterly Journal of the Royal Meteorological Society, 133, 2117–2131. DOI: https://doi.org/10.1002/qj.173
Czarnecka M., Nidzgorska-Lencewicz J. 2017: Zmienność termicznej zimy w Polsce w latach 1960-2015. Acta Agrophysica, 24 (2), 205–220.
Czernecki B., Miętus M., 2017: The thermal seasons variability in Poland, 1951–2010. Theoretical and Applied Climatology, 127, 481–493. DOI: https://doi.org/10.1007/s00704-015-1647-z
Degirmendžić J., 1999: Wpływ klina Wyżu Azjatyckiego nad Skandynawią na temperaturę powietrza w Europie. Przegląd Geofizyczny, 44, 211–229.
Hoy A., Hänsel S., Skalak P., Ustrnul Z., Bochníček O., 2017: The extreme European summer of 2015 in a long-term perspective. International Journal of Climatology, 37 (2), 943–962. DOI: https://doi.org/10.1002/joc.4751
Hurrel J.W., 1995: Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science, 269, 676–679. DOI: https://doi.org/10.1126/science.269.5224.676
Hurrel J.W., Deser C., 2010: North Atlantic climate variability: the role of the North Atlantic Oscillation. Journal of Marine Systems, 78, 28–41. DOI: https://doi.org/10.1016/j.jmarsys.2008.11.026
Informacja Tygodniowa, Zagrożenia – Skutki – Ocena, 2016: Rządowe Centrum Bezpieczeństwa, http://rcb.gov.pl/wp-content/uploads/BIULETYN-ANALITYCZNY-nr-14.pdf [dostęp: 15.01.2018].
Informacja Tygodniowa, Zagrożenia – Skutki – Ocena, 2017: Rządowe Centrum Bezpieczeństwa. Dostęp: http://rcb.gov.pl/wp-content/uploads/BIULETYN-ANALITYCZNY-nr-18. pdf (dostęp: 15.01.2018).
IPCC, 2013: Climate change: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel in Climate Change. Cambridge University Press, Cambridge.
Jarzyna K., Krzyżewska A., 2021: Cold spell variability in Europe in relation to the degree of climate continentalism in 1981–2018 period. Weather, 76 (4), 122–128. DOI: https://doi.org/10.1002/wea.3937
Kolendowicz L., Czernecki B., Półrolniczak M., Taszarek M., Tomczyk A.M., Szyga-Pluta K., 2019: Homogenization of air temperature and its long-term trends in Poznań (Poland) for the period 1848–2016. Theoretical and Applied Climatology, 136, 1357–1370. DOI: https://doi.org/10.1007/s00704-018-2560-z
Krzyżewska A., 2014: Fale ciepła i chłodu w (V) południowo-wschodnim regionie bioklimatycznym w latach 1981–2010. Annales Universitatis Mariae Curie-Sklodowska, sectio B, 49, 143–154.
Kundzewicz Z.W., Huang S., 2010: Seasonal temperature extremes in Potsdam. Acta Geophysica, 58 (6), 1115–1133. DOI: https://doi.org/10.2478/s11600-010-0026-5
Lhotka O., Kyselý J., 2015: Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. International Journal of Climatology, 35 (7), 1232–1244. DOI: https://doi.org/10.1002/joc.4050
Liu Y., Wang L., Zhou W., Chen W., 2014: Three Eurasian teleconnection patterns: spatial structures, temporal variability, and associated winter climate anomalies. Climate Dynamics, 42, 2817–2839. DOI: https://doi.org/10.1007/s00382-014-2163-z
Nojarov P. 2017: Circulation factors affecting precipitation over Bulgaria. Theoretical and Applied Climatology, 127 (1–2), 87–101. DOI: https://doi.org/10.1007/s00704-015-1633-5
Owczarek M., Filipiak J., 2016: Contemporary changes of thermal conditions in Poland, 1951–2015. Bulletin of Geography. Physical Geography Series 10, 31–50. DOI: https://doi.org/10.1515/bgeo-2016-0003
Piniewski M., Mezghani A., Szcześniak M., Kundzewicz Z., 2017: Regional projections of temperature and precipitation changes: Robustness and uncertainty aspects. Meteorologische Zeitschrift, 26, 223–234. DOI: https://doi.org/10.1127/metz/2017/0813
Ptak M., Tomczyk A.M., Wrzesiński D., 2018: Effect of Teleconnection Patterns on Changes in Water Temperature in Polish Lakes. Atmosphere 9, 66. DOI: https://doi.org/10.3390/atmos9020066
Revich B.A., Shaposhnikov D.A., 2016: Cold waves in southern cities of European Russia. Studies on Russian Economic Development, 27 (2), 210–215. DOI: https://doi.org/10.1134/S107570071602012X
Salmaso N., Cerasimo L., 2012: Long-term trends and fine year-to-year tuning of phytoplankton in large lakes are ruled by eutrophication and atmospheric modes of variability. Hydrobiologia, 698, 17–28. DOI: https://doi.org/10.1007/s10750-012-1068-2
Shevchenko O., Lee H., Snizhko S., Mayer H., 2014: Long-term analysis of heat waves in Ukraine. International Journal of Climatology, 34, 1642–1650. DOI: https://doi.org/10.1002/joc.3792
Spinoni J., Lakatos M., Szentimrey T., Bihari Z., Szalai S., Vogt J., Antofie T., 2015: Heat and cold waves trends in the Carpathian Region from 1961 to 2010. International Journal of Climatology, 35 (14), 4197–4209. DOI: https://doi.org/10.1002/joc.4279
Szwed M., Pińskwar I., Kundzewicz Z.W., Graczyk D., Mezghani A., 2017: Changes of snow cover in Poland. Acta Geophysica, 65, 65–76. DOI: https://doi.org/10.1007/s11600-017-0007-z
Tomczyk A.M., 2015: Impact of macro-scale circulation types on the occurrence of frosty days in Poland. Bulletin of Geography. Physical Geography Series, 9, 55–65. DOI: https://doi.org/10.1515/bgeo-2015-0016
Tomczyk A.M., 2022: Termiczne pory roku, [w:] A.M. Tomczyk, E. Bednorz (red.), Atlas klimatu Polski (1991–2020). Bogucki Wydawnictwo Naukowe.
Tomczyk A.M., Bednorz E., 2019: Heat waves in Central Europe and tropospheric anomalies of temperature and geopotential heights. International Journal of Climatology, DOI: https://doi.org/10.1002/joc.6067
Tomczyk A.M., Bednorz E., 2020: The extreme year – analysis of thermal conditions in Poland in 2018. Theoretical and Applied Climatology. DOI: https://doi.org/10.1007/s00704-019-02968-9
Tomczyk A.M., Bednorz E., Półrolniczak M., Kolendowicz L., 2019a: Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theoretical and Applied Climatology, 137 (3–4), 1909–1923. DOI: https://doi.org/10.1007/s00704-018-2715-y
Tomczyk A.M., Bednorz E., Szyga-Pluta K., 2021: Changes in air temperature and snow cover in winter in Poland. Atmosphere, 12, 68. DOI: https://doi.org/10.3390/atmos12010068
Tomczyk A.M., Sulikowska A., Bednorz E., Półrolniczak M., 2019b: Atmospheric circulation conditions during winter warm spells in Central Europe. Natural Hazards, 96 (3), 1413–1428. DOI: https://doi.org/10.1007/s11069-019-03621-4
Wibig J., 2001: Wpływ cyrkulacji atmosferycznej na rozkład przestrzenny anomalii temperatury i opadów w Europie. WN UŁ, Łódź, 208.
Wibig J., 2018: Heat waves in Poland in the period 1951-2015: trends, patterns and driving factors. Meteorology Hydrology and Water Management, 6 (1), 37–45. DOI: https://doi.org/10.26491/mhwm/78420
Licencja
Prawa autorskie (c) 2022 Prof. UAM dr hab. Arkadiusz M. Tomczyk, Filip Miś
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
PTPN ma prawa autorskie do tytułu czasopisma
https://creativecommons.org/licenses/by-nc-nd/4.0/