Modeling of natural aggregate heap using UAV technology with accuracy analysis
PDF (Język Polski)

Keywords

UAV
GNSS
surface modeling
geomatics

How to Cite

SMACZYŃSKI, M. (2019). Modeling of natural aggregate heap using UAV technology with accuracy analysis. Badania Fizjograficzne Seria A - Geografia Fizyczna, 10(A 70), 103–117. https://doi.org/10.14746/bfg.2019.10.9

Abstract

The purpose of this article is to determine the potential of imaging obtained using an unmannedaerial platform (UAV) to create a digital model of terrain for aggregate heaps (DTMs). In addition, the intermediategoal is to carry out an independent accuracy check of the calculated 3D model, which in the study will be referred to an independent measurement using GNSS technology. The research object was a heap of natural aggregate with irregular shape and height differences up to 11 meters. Three point clouds with different detail parameters were generated from the acquired images. For further analysis, a point cloud with the best ratio of terrain reflection accuracy to the calculated RMSE value was selected. Independent control of 3D model accuracy was based on seven heap control points measured in the field and the same points generated on the 3D model . The deviations of several centimeters between field control points and points from the model may indicate the great potential of UAV technology and the possibility of its use in various engineering tasks.

https://doi.org/10.14746/bfg.2019.10.9
PDF (Język Polski)

References

Ahmad A., 2011: Digital mapping using low altitude UAV. Pertanika Journ. of Sc. and Technol., 19(S), 51–58.

Anai T., Sasaki T., Osaragi K., Yamada M., Otomo F., Otani H., 2012: Automatic Exterior Orientation Procedure for Low-Cost Uav Photogrammetry Using Video Image Tracking Technique and Gps Information. ISPRS – International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sc., XXXIX-B7(September), 469–474, <http://doi.org/10.519/isprsarchives-XXXIX-B7-469-2012>.

Barazzetti L., Remondino F., Scaioni M., Brumana R., 2010: Fully automatic UAV image-basedsensor orientation. Internat. Arch. of Photogrammetry Remote Sensing and Spatial Information Sciences Vol. XXXVIII Part 5 Commission V Symposium, 6. Retrieved from <http://www.isprs.org/proceedings/XXXVIII/part1/12/12_02_Paper_75.pdf>.

Bosy J., 2014: Global, regional and national geodetic reference frames for geodesy and geodynamics. Pure and Applied Geo-physics, 171(6), 783–808.

Clapuyt F., Vanacker V., Schlunegger F., van Oost K., 2017: Unravelling earth flow dynamics with3-D time series derived from UAV-SfM models. Earth Surface Dynamics, 5, 791–806, <https://doi.org/10.5194/esurf-5-791-2017>.

Colomina I., Molina P., 2014: Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens, 92, 79–97.

Eisenbeiss H., 2004: A mini unmanned aerial vehicle (UAV): System overview and image acquisition. Proceedings of the Internat. Workshop on Processing and Visualization using High-Resolution Imagery, <https://doi.org/10.1017/ S0003598X00047980>.

Esposito G., Mastrorocco G., Salvini R., Oliveti M., Starita P., 2017: Application of UAV photogrammetry for the multitemporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environmental Earth Sc., 76(3), 103, <https://doi.org/10.1007/ s12665-017-6409-z>.

Eugster H., Nebiker S., 2008: Uav-Based Augmented Monitoring – Real-Time Georeferencing and Integration of Video Imagery With Virtual Globes. Arch., 37, 1229–1236. European Commission, 2007: Study analysing the current activities in the field of UAV. ENTR/2007/065.

Gonçalves J.A., Henriques R., 2015: UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journ. of Photogrammetry and Remote Sensing, 104, 101–111. DOI: http://doi.org/10.1016/j.isprsjprs.2015.02.009.

Goraj M., Karsznia K., Sikorska D., Hejduk L., Chormański J., 2019: Multi-wavelength airborne laser scanning and multispectral UAV-borne imaging. Ability to distinguish selected hydromorphological indicators. Conference Paper. 18th Internat. Multidisciplinary Sc. GeoConference SGEM2018, At Vienna.

Halik Ł., Smaczyński M., 2018: Geovisualisation of relief in a virtual reality system on the basis of low aerial images. Pure and Applied Geoph., 175, 9, 3209–3221.

Horbiński T., 2016: Dokumentacja kartograficzna zmian wydobycia kruszywa naturalnego w powiecie gnieźnieńskim w latach 2005–2015. Bad. Fizjograf. nad Pol. Zach. Ser. A – Geogr. Fiz., A67, 41–54. DOI: 10.14746/bfg.2016.7.4.

Horbiński T., Medyńska-Gulij B., 2017: Geovisualisation as a process of creating complementary visualisations: static two-dimensional, surface three-dimensional, and interactive. Geodesy & Cartography, 66, 1, 2017, 45–58. DOI: 10.1515/geocart-2017-0009.

Karsznia K., Skalski Z., Czarnecki L., 2010: System ciągłego monitoringu deformacji odkrywkowych wyrobisk górniczych a bezpieczeństwo prowadzenia robót górniczych. Przegl. Górniczy, R. 2010, t. 66, nr 10, 167–171.

Kędzierski M., Fryśkowska A., Wierzbicki D., 2014: Opracowania fotogrametryczne z niskiego pułapu. Wojskowa Akad. Techn., Warszawa.

de Kock M.E., Gallacher D., 2016: From drone data to decisions: Turning images into ecological answers. Conference: Innovation Arabia 9 (February).

Kozieł Z., 1997: Concerning the need for development of the geomatic research method. Geodezja i Kartografia, 663, 217–224.

Kršák B., Blistan P., Pauliková A., Puskarova P., Kovanič L., Palková J., Zelizňaková V., 2016: Use of low-cost UAV photogrammetry to analyse the accuracy of a digital elevation model in a case study. Measurement, 91, 276–287.

Kujawski A., Stępień G., 2017: A method of determining inland vessel position using a single stationary, non-metric camera. Sc. Journ. of the Maritime Univ. of Szczecin, 52(124), 103‒111.DOI: 10.17402/251.

Lin Z., 2008: UAV for mapping-low altitude photogrammetric survey. The Internat. Arch. of the Photogrammetry, Remote Sensing and Spatial Information Sc., 37(Part B1), 1183–1186, <http://citeseerx.ist.psu.edu/viewdoc/download?>. DOI: 10.1.1.150.9698&rep=rep1&type-=pdf.

Medyńska-Gulij B., 2015: Kartografia. Zasady i zastosowania geowizualizacji. Wyd. Nauk. PWN, Warszawa, 228.

Nex F., Remondino F., 2014: UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15, <http://doi.org/10.1007/s12518-013-0120-x>.

Ostrowski W., Hanus K., 2016: Budget UAV systems for the prospection of small- and mediumscale archaeological sites. ISPRS Arch. of Photogrammetry, Remote Sensing and Spatial Information Sc., 41(July), 971–977.

Remondino F., Barazzetti L., Nex F., Scaioni M., Sarazzi D., 2012: UAV Photogrammetry for mapping and 3D modeling-current status and future perspectives. ISPRS – Internat. Arch. of the Photogrammetry, Remote Sensing and Spatial Information Sc., 38-1(September), 25–31.

Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 3 listopada 2011 r. w sprawie baz danych dotyczących zobrazowań lotniczych i satelitarnych oraz ortofotomapy i numerycznego modelu terenu. Dz.U. 2011 Nr 263, poz. 1571.

Rozporządzenie Rady Ministrów z dnia 15 października 2012 r. w sprawie państwowego systemu odniesień przestrzennych. Dz.U. 2012, poz. 1247.

Ruzgienė B., Berteška T., Gečyte S., Jakubauskienė E., Aksamitauskas V.Č., 2015: The surface modelling based on UAV Photogrammetry and qualitative estimation. Measurement, 73, 619–627, <http://doi.org/10.1016/j.measurement.2015.04.018>.

Siebert S., Teizer J., 2014: Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Automation in Construction, 41, 1–14, <https://doi.org/10.1016/j.autcon.2014.01.004>.

Smaczyński M., Medyńska-Gulij B., 2017: Low aerial imagery – an assessment of georeferencing errors and the potential for use in environmental inventory. Geodesy and Cartograph., Vol. 66, No. 1, 89–104. DOI: 10.1515/geocart-2017-0005.

Stępień G., Metynowska M., Antosik A., Sanecki J., Beczkowski K., Klewski A., Borczyk K., Hałaburda R., Olek K., 2018: Application of UAV for Rapid Mapping Purposes. Top 5 Contributions in Sensor and Biosensor Technology, Avid Science.

Tofani V., Segoni S., Agostini A., Catani F., Casagli N., 2013: Technical note: use of remote sensing for landslide studies in Europe. Nat Hazards Earth Syst Sc., 13, 1–12. Torres M., Pelta D.A., Verdegay J.L., Torres J.C., 2016: Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction. Expert Systems with Applications, 55, 441–451.

Toutin T., Chenier R., 2004: GCP requirement for high-resolution satellite mapping. XXth ISPRS Congress, 12–23, http://www.cartesia.org/geodoc/isprs2004/comm3/papers/385.pdf>.

Uysal M., Toprak A.S., Polat N., 2015: DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement: Journ. of the Internat. Measurement Confederation, 73, 539–543, <http://doi.org/10.1016/j.measurement.2015.06.010>.

Wang J., Garratt M., Lambert A., Wang J.J., Han S., Sinclair D., 2008: Integration of Gps/Ins/Vision Sensors To Navigate Unmanned Aerial Vehicles, 963–970.

Watts A.C., Ambrosia V.G., Hinkley E.A., 2012: Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sensing, 4, 1671–1692, <https://doi.org/10.3390/rs4061671>.

Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M., 2012: ‘Structure-from-Motion’ photogramme- try: A low-cost, effective tool for geoscience applications. Geomorph., 179, 300–314.