Meteorological Conditions of Severe Storms - Case study of 10 July 2020.
PDF (Język Polski)

Keywords

convective indicators
meteorological reanalysis
supercell
convective outlook

How to Cite

Stępczyński, D. (2023). Meteorological Conditions of Severe Storms - Case study of 10 July 2020. Badania Fizjograficzne Seria A - Geografia Fizyczna, 13(A 73), 167–192. https://doi.org/10.14746/bfg.2022.13.10

Abstract

Considered the most dangerous type of thunderstorm, supercell thunderstorms appear in strictly defined meteorological conditions in the troposphere. Predicting their location is particularly problematic in an environment of strong vertical wind shear and low instability. An example of such a situation is the supercell that contributed to the development of the tornado on July 10, 2020 at 18:10 CEST in Ustronie Morskie. On that day, two dangerous supercells were also created, which, at the peak of activity, passed over Lubusz and Masovian Provinces. The tornado in Ustronie Morskie was formed on the wavy front, while the supercell developing in Lubusz and Mazovia Land was observed on the cold front. Large hail and damaging wind gusts associated with the downburst in the west of the country took place in higher atmospheric instability than the other cases. The MLCAPE was over 200 J kg–1 higher than that for peak activity of the other storms discussed in the paper. This could have been crucial for the formation of the largest hail recorded on July 10, 2020 in Poland. The highest values of wind shear and storm relative helicity occurred on the coast which could have influenced the formation of a tornado despite the low values of atmospheric instability. The hook echo radar signature in Mazovia Land developed with a similar MLCAPE as the tornado on the coast (nearly 500 J kg–1). On the other hand, the MUCAPE and SBCAPE was much higher there (approx. 500 J kg–1 more), and so was the LCL level. This proves a higher humidity deficit in the lower troposphere in the place where the hook echo passes. With regard to the ESTOFEX and Skywarn Polska convection outlook, the tornado was the most difficult phenomenon to predict. Hail and damaging wind gusts not related to rotation coincided to a greater extent with the convective outlook.

https://doi.org/10.14746/bfg.2022.13.10
PDF (Język Polski)

References

Antonescu B., Schultz D.M., Lomas F., Kühne T., 2016: Tornadoes in Europe: Synthesis of the observational datasets. Monthly Weather Review, 144 (7), 2445–2480. DOI: https://doi.org/10.1175/MWR-D-15-0298.1

Blumberg W.G., Halbert K.T., Supinie T.A., Marsh P.T., Thompson R.L., Hart J.A., 2017: SHARPpy: An Open Source Sounding Analysis Toolkit for the Atmospheric Sciences. Bull. Amer. Meteor. Soc. DOI: 10.1175/BAMS-D-15-00309.1, in press. DOI: https://doi.org/10.1175/BAMS-D-15-00309.1

Brooks H.E., Doswell III C.A., Cooper J. 1994: On the environments of tornadic and nontornadic mesocyclones. Weather and forecasting, 9 (4), 606–618. DOI: https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2

Brooks H.E., Marsh P.T., Kowaleski A.M., Groenemeijer P., Thompson T.E., Schwartz C.S., Buckey D., 2011: Evaluation of European Storm Forecast Experiment (ESTOFEX) forecasts. Atmospheric Research, 100 (4), 538–546. DOI: https://doi.org/10.1016/j.atmosres.2010.09.004

Bunkers M.J., Klimowski B.A., Zeitler J.W., 2002: The importance of parcel choice and the measure of vertical wind shear in evaluating the convective environment. 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., P8. 2.

Coffer B.E., Taszarek M., Parker M.D., 2020: Near-ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses. Weather and Forecasting, 35 (6), 2621–2638. DOI: https://doi.org/10.1175/WAF-D-20-0153.1

Craven J.P., Brooks H.E., 2004: Baseline climatology of sounding-derived parameters associated with deep moist convection. Nat. Wea. Dig., 28, 13–24.

Davies J.M., 2006: Tornadoes in environments with small helicity and/or high LCL heights. Wea ther and forecasting, 21 (4), 579–594. DOI: https://doi.org/10.1175/WAF928.1

Dean A.R., Schneider R.S., 2012: An examination of tornado environments, events, and impacts from 2003–2012. In 26th Conf. on Severe Local Storms.

Doswell III C.A., Weiss S.J., Johns R.H., 1993: Tornado forecasting: A review. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr, 79, 557–571. DOI: https://doi.org/10.1029/GM079p0557

Doswell C.A., Burgess D.W., 1993: Tornadoes and tornadic storms: A review of conceptual models. Geophysical Monograph – American Geophysical Union, 79, 161–161. DOI: https://doi.org/10.1029/GM079p0161

Doswell III C.A., Brooks H.E., Dotzek N., 2009: On the implementation of the enhanced Fujita scale in the USA. Atmospheric Research, 93 (1–3), 554–563. DOI: https://doi.org/10.1016/j.atmosres.2008.11.003

Dotzek N., 2001: Tornadoes in Germany. Atmospheric Research, 56 (1–4), 233–251. DOI: https://doi.org/10.1016/S0169-8095(00)00075-2

Dotzek N., Groenemeijer P., Feuerstein B., Holzer A.M., 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmospheric Research, 93 (1–3), 575–586. DOI: https://doi.org/10.1016/j.atmosres.2008.10.020

Forbes G.S., 1981: On the reliability of hook echoes as tornado indicators. Monthly Weather Review, 109 (7), 1457–1466. DOI: https://doi.org/10.1175/1520-0493(1981)109<1457:OTROHE>2.0.CO;2

Fujita T.T., 1978: Manual of downburst identification for project NIMROD. SMRP Res. Paper, 156, 104.

Fujita T.T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. Chicago: University of Chicago.

Gatzen C., Púčik T., Ryva D., 2011: Two cold – season derechoes in Europe. Atmospheric Research, 100 (4), 740–748. DOI: https://doi.org/10.1016/j.atmosres.2010.11.015

Groenemeijer P.H., Van Delden A., 2007: Sounding–derived parameters associated with large hail and tornadoes in the Netherlands. Atmospheric Research, 83 (2–4), 473–487. DOI: https://doi.org/10.1016/j.atmosres.2005.08.006

Groenemeijer P., Púčik T., Holzer A.M., Antonescu B., Riemann-Campe K., Schultz D.M., Sausen R., 2017: Severe convective storms in Europe: Ten years of research and education at the European Severe Storms Laboratory. Bulletin of the American Meteorological So- DOI: https://doi.org/10.1175/BAMS-D-16-0067.1

ciety, 98 (12), 2641–2651.

Grünwald S., Brooks H.E., 2011: Relationship between sounding derived parameters and the strength of tornadoes in Europe and the USA from reanalysis data. Atmospheric Research, 100 (4), 479–488. DOI: https://doi.org/10.1016/j.atmosres.2010.11.011

Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz‐Sabater J., Simmons A., 2020: The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999–2049. DOI: https://doi.org/10.1002/qj.3803

Kolendowicz L., Taszarek M., Czernecki B., 2017: Atmospheric circulation and sounding–derived parameters associated with thunderstorm occurrence in Central Europe. Atmospheric Research, 191, 101–114. DOI: https://doi.org/10.1016/j.atmosres.2017.03.009

Kowaleski A., Brooks H.E., Doswell C., 2010, January: Verification of ESTOFEX Lightning and Severe Weather Forecasts. In 9th Annual Student Conference.

Markowski P.M., Richardson Y.P., 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmospheric Research, 93 (1–3), 3–10. DOI: https://doi.org/10.1016/j.atmosres.2008.09.015

Matczak P., 2020: Warunki synoptyczne sprzyjające rozwojowi superkomórek burzowych w latach 2010–2019.

Moller A.R., Doswell III C.A., Foster M.P., Woodall G.R., 1994: The operational recognition of supercell thunderstorm environments and storm structures. Weather and Forecasting, 9 (3), 327–347. DOI: https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2

Parfiniewicz J., 2009: Tornado w rejonie Częstochowy – 20 lipca 2007, cz. 1: Analiza synoptyczna. Przegląd Geofizyczny, 54, 3–4.

Pilguj N., Taszarek M., Pajurek Ł., Kryza M., 2019: High–resolution simulation of an isolated tornadic supercell in Poland on 20 June 2016. Atmospheric Research, 218, 145–159. DOI: https://doi.org/10.1016/j.atmosres.2018.11.017

Pilorz W., 2014: Radarowa detekcja superkomórek burzowych w Polsce. Teledetekcja Środowiska, 51.

Pilorz W., Laskowski I., Obrazy radarowe źródłem informacji o zagrożeniach meteorologicznych.

Popławska J., 2014: Tornada superkomórkowe w Polsce – studium przypadku z 15 sierpnia 2008. Prace i Studia Geograficzne, 56.

Poręba S., Ustrnul Z., 2020: Forecasting experiences associated with supercells over South–Western Poland on July 7, 2017. Atmospheric Research, 232, 104681. DOI: https://doi.org/10.1016/j.atmosres.2019.104681

Púčik T., Groenemeijer P., Rýva D., Kolář M., 2015: Proximity soundings of severe and nonsevere thunderstorms in central Europe. Monthly Weather Review, 143 (12), 4805–4821. DOI: https://doi.org/10.1175/MWR-D-15-0104.1

Rasmussen E.N., 2003: Refined supercell and tornado forecast parameters. Weather and Forecasting, 18 (3), 530–535. DOI: https://doi.org/10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2

Rasmussen E.N., Blanchard D.O., 1998: A baseline climatology of sounding – derived supercell and tornado forecast parameters. Weather and Forecasting, 13 (4), 1148–1164. DOI: https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2

Schneider R.S., Dean A.R., 2008, October: A comprehensive 5-year severe storm environment climatology for the continental United States. In Preprints, 24th Conf. on Severe Local

Storms, Savannah, GA, Amer. Meteor. Soc. A (Vol. 16).

Sherburn K.D., Parker M.D., 2014: Climatology and ingredients of significant severe convection in high–shear, low–CAPE environments. Weather and Forecasting, 29 (4), 854–877. DOI: https://doi.org/10.1175/WAF-D-13-00041.1

Taszarek M., 2013: Możliwości prognozowania trąb powietrznych w Polsce = Forecasting the possible emergence of tornadoes in Poland. Przegląd Geograficzny, 85 (3), 353–371 DOI: https://doi.org/10.7163/PrzG.2013.3.2

Taszarek M., 2016: Charakterystyka występowania burz oraz trąb powietrznych na obszarze Polski.

Taszarek M., Brooks H.E., 2015: Tornado climatology of Poland. Monthly Weather Review, 143 (3), 702–717. DOI: https://doi.org/10.1175/MWR-D-14-00185.1

Taszarek M., Kolendowicz L., 2013: Sounding – derived parameters associated with tornado occurrence in Poland and Universal Tornadic Index. Atmospheric Research, 134, 186–197. DOI: https://doi.org/10.1016/j.atmosres.2013.07.016

Taszarek M., Suwała K., 2015: Large hail in Poland in 2012. Quaestiones Geographicae, 34 (1), 75–84. DOI: https://doi.org/10.1515/quageo-2015-0007

Taszarek M., Allen J.T., Púčik T., Hoogewind K.A., Brooks H.E., 2020: Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes. Journal of Climate, 33 (23), 10 263–10 286. DOI: https://doi.org/10.1175/JCLI-D-20-0346.1

Taszarek M., Allen J., Púčik T., Groenemeijer P., Czernecki B., Kolendowicz L., Schulz W., 2019: A climatology of thunderstorms across Europe from a synthesis of multiple data sources. Journal of Climate, 32 (6), 1813–1837. DOI: https://doi.org/10.1175/JCLI-D-18-0372.1

Taszarek M., Czernecki B., Walczakiewicz S., Mazur A., Kolendowicz L., 2016: An isolated tornadic supercell of 14 July 2012 in Poland – A prediction technique within the use of coarse-grid WRF simulation. Atmospheric Research, 178, 367–379. DOI: https://doi.org/10.1016/j.atmosres.2016.04.009

Taszarek M., Pilguj N., Orlikowski J., Surowiecki A., Walczakiewicz S., Pilorz W., Półrolniczak M., 2019: Derecho evolving from a mesocyclone – A study of 11 August 2017 severe weather outbreak in Poland: Event analysis and high–resolution simulation. Monthly Weather Review, 147 (6), 2283–2306. DOI: https://doi.org/10.1175/MWR-D-18-0330.1

Thompson R.L., Mead C.M., Edwards R., 2007: Effective storm–relative helicity and bulk shear in supercell thunderstorm environments. Weather and Forecasting, 22 (1), 102–115. DOI: https://doi.org/10.1175/WAF969.1

Thompson R.L., Edwards R., Hart J.A., Elmore K.L., Markowski P., 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Weather and Forecasting, 18, 1243–1261. DOI: https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2

Walczakiewicz S., 2020: Regiony trąb powietrznych w Polsce – meteorologiczne uwarunkowania oraz rozkład przestrzenny i czasowy. Uniwersytet Szczeciński, Szczecin.

Walczakiewicz S., Ostrowski K., Surowiecki A., 2011: Warunki synoptyczne występowania trąb powietrznych w Polsce w latach 2001–2010. Prace Wydziału Nauk o Ziemi Uniwersytetu Śląskiego, 70, 43–52.

https://lowcyburz.pl/download/przewodnik_po_prognozach_konwekcyjnych.pdf [dostęp: 7.06.2022].

https://eswd.eu/ [dostęp: 7.06.2022].

https://www.eswd.eu/docs/ESWD_criteria_en.pdf [dostęp: 7.06.2022].