Abstrakt
Mental health is a complex field that requires input from multiple disciplines, including psychiatry, psychology, and healthcare. Artificial intelligence researchers need to work closely with mental health professionals to ensure that the implications of artificial intelligence are appropriate and effective for this field. The advancement of artificial intelligence in the 21st century has encompassed various aspects of mental healthcare, including early identification of mental health problems, individualized treatment plans, virtual therapists, advances in teletherapy, and continuous monitoring. Machine learning algorithms can analyse large datasets of patient information, including clinical records, genetic data, and brain imaging scans, to identify patterns and risk factors associated with mental disorders. By integrating this wealth of data, artificial intelligence systems can enhance diagnostic accuracy, assist clinicians in making informed decisions, and potentially enable early detection of mental health conditions. In the context of mental healthcare, where understanding complex human behaviour and emotions is paramount, artificial intelligence offers the potential to revolutionize mental healthcare by providing insights and solutions that were previously beyond the reach of conventional methods. Although artificial intelligence provides opportunities to improve mental healthcare, it also raises ethical considerations about individual freedom, privacy, and the potential for excessive dependence on technology. Integrating artificial intelligence into mental health care would bring many benefits; however, a balanced, complementary approach that emphasizes innovation and human connection can ensure a future in which mental health care is accessible, affordable, compassionate, and effective. Considering the aspects mentioned above, the present study aims to explore the role of artificial intelligence in mental health care, including diagnosis and treatment. Furthermore, we sought to highlight the key challenges, limitations, and opportunities of artificial intelligence in mental healthcare.
Bibliografia
Abrew, J.S. (2021). Founding fathers of artificial intelligence. Quidgest. Retrieved from https://quidgest.com/en/blog-en/ai-founding-fathers/
Agarwal, R., Bjarnadottir, M., Rhue, L., Dugas, M., Crowley, K., Clark, J., & Gao, G. (2023). Addressing algorithmic bias and the perpetuation of health inequities: an AI bias aware framework. Health Policy and Technology, 12(1), 100702. DOI: https://doi.org/10.1016/j.hlpt.2022.100702
Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database, 2020, 1-35. DOI: https://doi.org/10.1093/database/baaa010
Alexios-Fotios, M.A., Lee, D., & Roussos, F. (2023). Application of artificial intelligence – machine learning for detection of stress: A critical overview. Molecular Psychiatry, 29, 1882-1894. DOI: https://doi.org/10.1038/s41380-023-02047-6
Barrett, P.M., Steinhubl, S.R., Mase, E.D., & Topol, E. (2017). Digital medicine: Digitising the mind. The Lancet, 389, 1877. DOI: https://doi.org/10.1016/S0140-6736(17)31218-7
Basil, A. (2021). ELIZA: The chatbot who revolutionized human-machine interaction (an introduction). Nerd for Tech, Jan 18. Retrieved from https://medium.com/nerd-for-tech/eliza-the-chatbot-who-revolutionised-human-machine-interraction-on-introduction-582a7
Batko, K. & Slezak, A. (2022). The use of big-data analytics in healthcare. Journal of Big Data, 9(1), 3-10. DOI: https://doi.org/10.1186/s40537-021-00553-4
Bickman, L. (2020). Improving mental health services: A 50-year journey from randomized experiments to artificial intelligence and precision mental health. Administration and Policy in Mental Health and Mental Health Services Research,77(5), 795-843. DOI: https://doi.org/10.1007/s10488-020-01065-8
Briganti, B. (2023a). A Doctor’s Guide to Foundation Models. OSF Preprints. DOI: https://doi.org/10.31219/osf.io/5zg3q
Briganti, G. (2023b). Intelligence artificial: Une introduction pour les cliniciens. Revue des Maladies Respirators, 40(4), 308-313. DOI: https://doi.org/10.1016/j.rmr.2023.02.005
Briganti, G., Kornreich, C., & Linkowoski. P. (2021). A network structure of manic symptoms. Brain and Behaviour, 11(3): E02010. DOI: https://doi.org/10.1002/brb3.2010
Chen, J., Mullins, C.D., Novak, P., & Thomas, S.B. (2016). Personalized strategies to activate and empower patients in health care and reduce health disparities. Health Education Behaviour, 43(1), 25-34. DOI: https://doi.org/10.1177/1090198115579415
Chen, X., Li, Y., & Zhang, H. (2023). Artificial intelligence in the diagnosis of mental health conditions: A systematic study. Frontiers in Psychology,14, 109213.
Cresswell-Smith, J., Kauppinen, T., &Laaksoharju, T. (2022). Mental health and mental wellbeing impact assessment frameworks: A systematic review. International Journal of Environmental Research Public Health,19(21), 13985. DOI: https://doi.org/10.3390/ijerph192113985
D’Alfonso, S. (2020). AI in mental health. Current Opinion in Psychology, 1(36), 112-117. DOI: https://doi.org/10.1016/j.copsyc.2020.04.005
Dwyer, D.B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91-118. DOI: https://doi.org/10.1146/annurev-clinpsy-032816-045037
Faelens, J., Smith, A., Johnson, B., & Davis, C. (2018). Negative psychological outcomes of AI-powered social media platforms: Addiction, social comparison, self-esteem, and body image concerns. Journal of Social Media and Mental Health,10(3), 123-140.
Faust, O., Hagiwara, Y., Hong, T.I., Lih, O.S., & Acharya, U.R. Deep learning for healthcare applications based on physiological signals: A review. Computer Methods and Programs in Biomedicine,161, 1-13. DOI: https://doi.org/10.1016/j.cmpb.2018.04.005
Fodor, K., Smith, L., Johnson, R., & Davis, C. (2018). AI-powered virtual reality for exposure therapy in the treatment of post-traumatic stress disorder and anxiety disorders. Journal of Virtual Therapy,14(2), 78-95.
Garriga, R., Mas, J., & Abraha, S. (2022). Machine learning model to predict mental health crises from electronic health records. Natural Medicine,28(6), 1240-1248. DOI: https://doi.org/10.1038/s41591-022-01811-5
Gottesman, O., Johansson, F., Komorowski, M., Faisal, A., Sontag, D., & Doshi-Veles, F. (2019). Guidelines for reinforcement learning in healthcare. Natural Medicine,25, 1-18. DOI: https://doi.org/10.1038/s41591-018-0310-5
Graham, S., Depp, C., Lee, E.E., Nebeker, C., Tu, X., & Kim, H.C. (2019). Artificial intelligence for mental health and mental illnesses: An overview. Current Psychiatry Reports, 21, 1-18. DOI: https://doi.org/10.1007/s11920-019-1094-0
Gulliver, A., Griffiths, K. M., & Christensen, H. (2010). Perceived barriers and facilitators to mental health help-seeking in young people: A systematic review. BMC Psychiatry, 10, 113. DOI: https://doi.org/10.1186/1471-244X-10-113
Haines, N., Southward, M.W., Cheavens, T., Beauchaine, T., & Ahn, W.Y. (2019). Using computer-vision and machine learning to automate facial coding of positive and negative affect intensity. Plos One, 14(2), 146-152. DOI: https://doi.org/10.1371/journal.pone.0211735
Insel, T.R. (2017). Digital phenotyping technology for a new science of behavior. JAMA, 318, 1215-1221. DOI: https://doi.org/10.1001/jama.2017.11295
Iyotrsuun, N. K., Kim, S. H., Jhon, M., Yang, H. J., & Pant, S. (2022). A review of machine learning and deep learning approaches on mind mental health diagnosis. Healthcare,11(3), 285. DOI: https://doi.org/10.3390/healthcare11030285
Kaul, V., Enslin, S., & Gross, S.A. (2020). History of artificial intelligence in medicine. Gastrointestinal Endoscopy,92(4), 807-812. DOI: https://doi.org/10.1016/j.gie.2020.06.040
Khan, A., Liu, Q., & Wang, K. (2018). iMEGES: Integrated mental disorder Genome by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes. BMC Bioinformatics, 19(17), 501. DOI: https://doi.org/10.1186/s12859-018-2469-7
Koutsouleris, N., Hauser, T.U., & De Choudhury, M. (2022). From promise to practice: towards the realization of AI-informed mental health care. The Lancet Digital Health, 4(11), e829-e840. DOI: https://doi.org/10.1016/S2589-7500(22)00153-4
Langarizadeh, M., Tabatabael, M., Tavakol, M., Naghipour, M., &Moghbeli, F. (2017). Telemental health care, an effective alternative to conventional mental care: A systematic review. Acta Informatica Medica, 25(4), 240-246. DOI: https://doi.org/10.5455/aim.2017.25.240-246
Lee, E.E., Torous, J., De Choundhury, M., Depp, C.A. Graham, S.A., Kim, H.C., Paulus, M., Krystal, P., &Jeste, D.V. (2021). Artificial intelligence for mental health care: Clinical applications, barriers, facilitators and artificial wisdom. Biological Psychiatry, 6(9), 856-864. DOI: https://doi.org/10.1016/j.bpsc.2021.02.001
Lovejoy, C.A. (2019). Technological and mental health: The role of artificial intelligence. European Psychiatry, 55, 1-3. DOI: https://doi.org/10.1016/j.eurpsy.2018.08.004
Lucas, J., Smith, A., Johnson, B., & Davis, C. (2020). Influence of AI-mediated interactions on mental health outcomes: The role of chatbots and virtual companions. Journal of AI in Mental Health, 7(2), 78-95.
Manoj, P., Misha, K. M., Pattanayak, M., Shankar, A. U., Murthy, C. V., & Saubhagyalaxmi, S. (2023). Impact of Artificial Intelligence on Human Behaviour and Well-being. Journal of Propulsion Technology, 44(3), 1393-1401.
McConduck, P. (2004). Machines who think: A personal inquiry into the history and prospects of artificial intelligence. Boca Raton: CRC Press. DOI: https://doi.org/10.1201/9780429258985
Meyer, J., Smith, A., Johnson, B., & Davis, C. (2020). Privacy and data security concerns in the era of AI-driven technologies. Journal of Privacy and Data Protection, 8(3), 123-140.
Miotto, R., Wang, F., Jang, X., & Dudley, I.T. (2018). Deep learning for healthcare review: Opportunities and challenges. Brief Bioinformatics,19, 1236-1246. DOI: https://doi.org/10.1093/bib/bbx044
Minerva, P., & Giubilini, S. (2023). Is AI the future of mental healthcare? Topol,42(3), 809-817. DOI: https://doi.org/10.1007/s11245-023-09932-3
Mishra, G. (2024). A Comprehensive Review of Smart Healthcare Systems: Architecture, Applications, Challenges, and Future Directions. International Journal of Innovative Research in Technology and Science,12, 210-218.
Mobeen, N., Alam, M.M., Yafi, E., & Su, M. (2021). A systematic review of human computer interaction and explainable artificial intelligence in healthcare with artificial intelligence techniques. IEEE,9, 153316-153348.
Mohsin, S.H., Gapizov, A., & Ekhator, C. (2023). The role of artificial intelligence in medicine, risk stratification, and personalized treatment planning for congenital heart disease. Cureus, 15(8), e44374. DOI: https://doi.org/10.7759/cureus.44374
Montag, J., Smith, A., Johnson, B., & Davis, C. (2020). Ethical considerations in the use of AI for mental health: Informed consent, transparency, and algorithmic biases. Journal of Ethics in Mental Health, 12(2), 78-95.
Nazar, M., Muhammad, M.A., Eiad, Y., &Mazliham, S. (2021). A Systematic Review of Human-Computer Interaction and Explainable Artificial Intelligence in Healthcare with Artificial Intelligence Techniques. IEEE Access, 9, 153316-153348. DOI: https://doi.org/10.1109/ACCESS.2021.3127881
Omaghomi, T. T., Oluwafunmi, A.E., Opeoluwa, A., Evangel, C. A., & Ifeoma, P.O. (2024). A comprehensive review of telemedicine technologies: Past, present, and future prospects. International Medical Science Research Journal, 4, 183-93.
Penfold, R.B., Carrell, D.S., Cronkite, D.J., Pabiniak, C., Dodd, T., Glass, A.M., Johnson, E., Thompson, E., Arrighi, H.M., & Stang, P.E. (2022). Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening. BMC Medical Informatics and Decision Making, 22(1), 129-137. DOI: https://doi.org/10.1186/s12911-022-01864-z
Raphael-Rene, D. (2023). Artificial intelligence for competitive advantage. Grata. Grata Software. Custom Software Development and Engineering. Retrieved from https://www.gratasoftware.com/artificial-intelligence-for-competetive-advantage-insights-for-business-leaders
Ray, A., Bhardwaj, Y.K., & Maita, K.C. (2022). Artificial intelligence and psychiatry in overview. Asian Journal of Psychiatry, 70, 103021. DOI: https://doi.org/10.1016/j.ajp.2022.103021
Rogan, J., Bucci, S., & Firth, J. (2024). Health Care Professionals’ Views on the Use of Passive Sensing, AI, and Machine Learning in Mental Health Care: Systematic Review with Meta-Synthesis. JMIR Mental Health 11, e49577. DOI: https://doi.org/10.2196/49577
Rosenfeld, A., Benrimoh, D., Armstrong, C., Mirchi, N., Langlois-Therrien, T., Rollins, C., Tanguay-Sela, M., Mehltretter, J., Pratila, R., Israel, S., Snook, E., Perlman, K., & Yaniv-Rosenfeld, A. (2021).Big data analytics and artificial intelligence in mental healthcare. In A. Khanna, D. Gupta, & N. Dey (Eds.) Applications of Big Data in Healthcare: Theory and Practice (pp.137-171). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-820203-6.00001-1
Sabry, G., Eltaras, T., Labda, W., Alzoubi, K., & Malluhi, Q. (2022). Machine learning for healthcare wearable devices: The big picture. Journal of Healthcare Engineering, 4653923. DOI: https://doi.org/10.1155/2022/4653923
Schueller, S.M. & Torous, J. (2020). Scaling evidence-based treatment through digital mental health. American Psychologist,75(8), 1093-1104. DOI: https://doi.org/10.1037/amp0000654
Siala, H. & Wang, Y. (2022). Shifting artificial intelligence to be responsible in healthcare: A systematic review. Social Science of Medicine, 19(3), 7737. DOI: https://doi.org/10.1016/j.socscimed.2022.114782
Tatineni, S. (2019). Ethical Considerations in AI and Data Science: Bias, Fairness, and Accountability. International Journal of Information Technology and Management Information Systems, 10(1), 11-20.
Terra, M., Baklola, M., Ali, S., & El-Bastawisy, K. (2023). Opportunities, applications, challenges and ethical implications of artificial intelligence in psychiatry: A narrative review. Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 59, 80. DOI: https://doi.org/10.1186/s41983-023-00681-z
Tiribelli, S. (2023). The AI ethics principle of autonomy in health recommender systems. Argumenta,16, 1-18.
Toritsemogba, O.T., Adijat, O.E., Akomolafe, O., Chinyere, E.A., & Odilibe, I.P. (2024). A comprehensive review of telemedicine technologies: Past, present, and future prospects. International Medical Science Research Journal, 4, 183-193. DOI: https://doi.org/10.51594/imsrj.v4i2.811
Tornero-Costa, R., Martinez-Millana, A., Azzopardi-Muscat, N., Lazeri, L., Traver, V., &Novillo-Ortiz, D. (2023). Methodological and quality flaws in the use of artificial intelligence in mental health research: systematic review. JMIR Mental Health, 10, e42045. DOI: https://doi.org/10.2196/42045
Uwa, P. (2023). Unleashing the potential of artificial intelligence: Revolutionizing industries and shaping for future. Medium. Retrieved from https://medium.com/@paulnodfield/unleashing-the-potential-of-artificial-intelligence-revolutionizing-industries-and-shaping-the74a668f9712e
Velten, J., Bieda, A., Scholten, S., & Margraf, J. (2018). Lifestyle choices and mental health: A longitudinal survey with German and Chinese students. BMC Public Health,18(1), 632. DOI: https://doi.org/10.1186/s12889-018-5526-2
Washington, P., Park, N., Sevastava, P., Voss, C., Kline, A., Varma, M., Tariq, Q., Kalantarion, H., Schwartz, J., & Patnaik, R. (2020). Data-driven diagnostics and the potential of mobile artificial intelligence for digital therapeutic phenotyping in computational psychiatry. Biological Psychiatry, 5, 739-769. DOI: https://doi.org/10.1016/j.bpsc.2019.11.015
World Health Organization. (2023). Mental health. Retrieved from https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response?gelid=CjwKCA
Zahlan, A., Prakash, R.R., & Hayses, D. (2023). Artificial intelligence innovation in healthcare: Literature review, exploratory analysis, and future research. Technology in Society, 74, 102321. DOI: https://doi.org/10.1016/j.techsoc.2023.102321
Zlatintsi, A., Filntisis, P.P., & Garoufis, C. (2022). E-prevention: Advanced support system for monitoring and relapse prevention in patients with psychotic disorders analysing long-term multimodal data from wearable and video captures. Sensors, 22(19), 7544. DOI: https://doi.org/10.3390/s22197544
Licencja
Prawa autorskie (c) 2025 Gordana Stankovska, Aferdita Ahmeti

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne 4.0 Międzynarodowe.
W przypadku zakwalifikowania tekstu do druku Autor wyraża zgodę na przekazanie praw autorskich do tego artykułu wydawcy (zob. Polityka open access). Autor artykułu zachowuje prawo wykorzystania treści opublikowanego przez czasopismo artykułu w dalszej pracy naukowej i popularyzatorskiej pod warunkiem wskazania źródła publikacji.

