Gen Z and the crisis of trust: linguistic manipulation in AI-generated fake news
Journal cover Scripta Neophilologica Posnaniensia, volume 25, year 2025
PDF

Keywords

fake news
credibility factors
disinformation
persuasion
linguistic manipulation
Gen Z

How to Cite

Urbaniak, A., Grodzki, E., & Phillips, M. (2025). Gen Z and the crisis of trust: linguistic manipulation in AI-generated fake news. Scripta Neophilologica Posnaniensia, 25, 197–212. https://doi.org/10.14746/snp.2025.25.13

Abstract

This study fills a research gap in the field of experimental investigations on the impact of linguistic manipulation on the assimilation of fake news among members of Generation Z. It aims to examine the extent to which members of Gen Z display susceptibility to media manipulation, with a particular focus on the linguistic markers of deception (LMDs) in media coverages. The research investigates whether the inclusion of credibility factors (CFs) in a text layer influence the perceived veracity of information. Specifically, the study seeks to determine whether the strategic use of CFs can lead individuals to perceive fabricated news as true. By analyzing the correlation between CFs and the perceived veracity of media coverage, the study explores the mechanisms behind text-based persuasion. A pilot study was conducted using a convenience sample of 47 undergraduate students from Adam Mickiewicz University in Poznań. As part of the study procedure, the participants were asked to evaluate the veracity of eight media messages by completing a survey. After listening to pre-recorded video news segments, the participants assessed the credibility of each item using a five-point Likert scale, indicating the extent to which they believed the information to be true or false. This research contributes to the analysis of manipulation within text linguistics, providing insights into the role of LMDs in shaping media perception. This paper presents the initial analysis of research findings obtained within the project Communicative Competence in the Global Village: Gen Z Facing the Truth, the Post-Truth, and Fake News in Social Media, conducted as part of the NCN Miniatura 5 grant.

https://doi.org/10.14746/snp.2025.25.13
PDF

Funding

Miniatura 5 NCN Program titled

References

Abrar, M.F., Khan, M.S., Khan, I. ElAffendi, M., & Ahmad, S. (2023). Towards Fake News Detection: A Multivocal Literature Review of Credibility Factors in Online News Stories and Analysis Using Analytical Hierarchical Process. Electronics, 12(3280). DOI: https://doi.org/10.3390/electronics12153280

Allen, J. Watts, D.J., & Rand, D.G. (2024). Quantifying the impact of misinformation and vaccine-skeptical content on Facebook. Science 384, 3451. DOI: https://doi.org/10.1126/science.adk3451

Anderau, G. (2021). Defining Fake News. KRITERION – Journal of Philosophy, 35(3), 197–215. DOI: https://doi.org/10.1515/krt-2021-0019

Arciuli, J., Mallard, D., & Villar, G. (2010). “Um, I can tell you’re lying”: Linguistic markers of deception versus truth-telling in speech. Applied Psycholinguistics 31, 397–411. DOI: https://doi.org/10.1017/S0142716410000044

Arqoub, A.O., Elega, A.A., Efe Özad, B., Dwikat, H., & Oloyede, F.A. (2020). Mapping the Scholarship of Fake News Research: A Systematic Review. Journalism Practice, 16, 56–86. DOI: https://doi.org/10.1080/17512786.2020.1805791

Canning, P., & Walker, B. (2024). Discourse Analysis: A Practical Introduction. New York: Routledge. DOI: https://doi.org/10.4324/9781003351207

Dinu, V., Pelau, C., Lile, R., & Boghicevici, C. (2024). Pay or leave? The role of social media fatigue and willingness to pay to avoid fake news in social networks use. Journal of Business Economics & Management, 25(3), 516–530. DOI: https://doi.org/10.3846/jbem.2024.21604

Eilders, C. (2006). News factors and news decisions. Theoretical and methodological advances in Germany. Communications, 31(1), 5–24. DOI: https://doi.org/10.1515/COMMUN.2006.002

El Rayess, M., Chebl, C., Mhanna, J. and Hage, R.-M. (2018), “Fake news judgement: The case of undergraduate students at Notre Dame University-Louaize, Lebanon”, Reference Services Review, Vol. 46 No. 1, pp. 146–149. DOI: https://doi.org/10.1108/RSR-07-2017-0027

Fairclough, N. (2015). Language and Power. New York: Routledge.

Fallis, D., and K. Mathiesen. 2019. “Fake News is Counterfeit News.” Inquiry. DOI: https://doi.org/10.1080/0020174X.2019.1688179

Francis, E., Monroe, A., Sidnam-Mauch, E., Ivancsics, B., Washington, E., McGregor, S.E., Bonneau, J., & Caine, K.E. (2023). Transparency, Trust, and Security Needs for the Design of Digital News Authentication Tools. Proceedings of the ACM on Human-Computer Interaction, 7, 1–44. DOI: https://doi.org/10.1145/3579534

George, J., Gerhart, N., & Torres, R. (2021). Uncovering the Truth about Fake News: A Research Model Grounded in Multi-Disciplinary Literature. Journal of Management Information Systems, 38(4), 1067–1094. DOI: https://doi.org/10.1080/07421222.2021.1990608

Grazulis, A., & Rogers, R. (2021). “Ridiculous and Untrue – FAKE NEWS!”. Research Anthology on Fake News, Political Warfare, and Combatting the Spread of Misinformation. DOI: https://doi.org/10.4018/978-1-7998-7291-7.ch002

Himelein-Wachowiak, M., Giorgi, S., Devoto, A., Rahman, M., Ungar, L., Schwartz, H. A., Epstein, D. H., Leggio, L., & Curtis, B. (2021). Bots and Misinformation Spread on Social Media: Implications for COVID-19. Journal of medical Internet research, 23(5), e26933. DOI: https://doi.org/10.2196/26933

Hlaing, M. M. M., & Kham, N. S. M. (2021). Comparative study of fake news detection using machine learning and neural network approaches. In Proceedings of the 11th International Workshop on Computer Science and Engineering (WCSE 2021) (pp. 59–64).

Horner, C. G., Galletta, D., Crawford, J., & Shirsat, A. (2021). Emotions: The unexplored fuel of fake news on social media. Journal of Management Information Systems, 38(4), 1039–1066. DOI: https://doi.org/10.1080/07421222.2021.1990610

Hyland, K., Paltridge, B., & Wong, L. (eds). (2021). The Bloomsbury Handbook of Discourse Analysis. London: Bloomsbury Academic. DOI: https://doi.org/10.5040/9781350156111

Lee, T. (2019), “The global rise of “fake news” and the threat to democratic elections in the USA”, Public Administration and Policy: An Asia-Pacific Journal, Vol. 22 No. 1, pp. 15–24. DOI: https://doi.org/10.1108/PAP-04-2019-0008

Lee, S.K., Sun, J., Jang, S. et al. (2022). Misinformation of COVID-19 vaccines and vaccine hesitancy. Sci Rep 0, 13681. DOI: https://doi.org/10.1038/s41598-022-17430-6

Lelo, T. V. (2020). A influência do partidarismo na recepção de fake news e fact-checking em contexto de polarização política. Observatorio, 14(3), 134–154. DOI: https://doi.org/10.15847/obsOBS14320201534

Nadarevic, L., Reber, R., Helmecke, A. J., & Köse, D. (2020). Perceived truth of statements and simulated social media postings: an experimental investigation of source credibility, repeated exposure, and presentation format. Cognitive Research: Principles and Implications, 5, Article 56. DOI: https://doi.org/10.1186/s41235-020-00251-4

Pepp, J., E. Michaelson, and R. K. Sterken. 2019. “What’s New About Fake News?” Journal of Ethics and Social Philosophy 16 (2): 67–94. DOI: https://doi.org/10.26556/jesp.v16i2.629

Prensky, M. (2001). Digital natives, digital immigrants. On the Horizon, 9(5), 1–6. DOI: https://doi.org/10.1108/10748120110424816

Seol, S., Mejia, J., & Dennis, A. R. (2024). Lying for viewers: Commingled partisan falseho- ods increase viewing and sharing of news media. MIS Quarterly, 48(2), 551–582. DOI: https://doi.org/10.25300/MISQ/2023/17928

Sharma, K., Ferrara, E., & Liu, Y. (2021). Characterizing online engagement with disinformation and conspiracies in the 2020 U.S. presidential election. arXiv. DOI: https://doi.org/10.1609/icwsm.v16i1.19345

Starbird, K., DiResta, R., & DeButts, M. (2023). Influence and Improvisation: Participatory Disinformation during the 2020 US Election. Social Media + Society, 9(2). DOI: https://doi.org/10.1177/20563051231177943

Tajrian, M., Rahman, A., Kabir, M.A., & Islam, M.R. (2023). A Review of Methodologies for Fake News Analysis. IEEE Access, 11, 73879–73893. DOI: https://doi.org/10.1109/ACCESS.2023.3294989

Tandoc, E.C., Lim, Z.W., & Ling, R. (2018). Defining “Fake News”. Digital Journalism, 6, 137–153. DOI: https://doi.org/10.1080/21670811.2017.1360143

Wan, H., Luo, M., Ma, Z., Dai, G., & Zhao, X. (2025). How do social bots participate in misinformation spread? A comprehensive dataset and analysis. arXiv. https://arxiv.org/abs/2408.09613. DOI: https://doi.org/10.18653/v1/2025.emnlp-main.1604

Wardle, C., & Derakhshan, H. (2017). Information Disorder: Toward an Interdisciplinary Framework for Research and Policymaking. Council of Europe. https://rm.coe.int/information-disorder-report-november-2017/1680764666.

Watt G. (2023). Faking News. In: The Making Sense of Politics, Media, and Law: Rhetorical Performance as Invention, Creation, Production. Law in Context. Cambridge University Press: 230–251. DOI: https://doi.org/10.1017/9781009336413.015

Wobbrock, J.O., Hattatoglu, L., Hsu, A.K., Burger, M.A., & Magee, M.J. (2021). The Goldilocks zone: young adults’ credibility perceptions of online news articles based on visual appearance. New Review of Hypermedia and Multimedia, 27, 51–96. DOI: https://doi.org/10.1080/13614568.2021.1889690

Zhou, X., & Zafarani, R. (2018). Fake News: A Survey of Research, Detection Methods, and Opportunities. ArXiv, abs/1812.00315.