Pomiar efektywności

Main Article Content

Jill Johnes

Abstrakt

Celem niniejszego rozdziału jest przede wszystkim identyfikacja i przedstawienie różnych metod pomiaru efektywności stosowanych w kontekście oceny funkcjonowania instytucji edukacyjnych w tym szkół wyższych. Ponadto dokonano przeglądu badań empirycznych wykorzystujących te metody na wszystkich poziomach edukacji.

Downloads

Download data is not yet available.

Article Details

Jak cytować
Johnes, J. (2018). Pomiar efektywności. Nauka I Szkolnictwo Wyższe, (2(52), 17-81. https://doi.org/10.14746/nisw.2018.2.1
Dział
Tłumaczenia
Biogram autora

Jill Johnes, Uniwersytet w Huddersfiled

profesor na Uniwersytecie w Huddersfield, Wielka Brytania gdzie jest dziekanem Huddersfield Business School, jest także profesorem wizytującym/honorowym na Uniwersytecie w Lancaster, na którym pracowała we wcześniejszych latach. Jej liczne prace badawcze koncentrują się przede wszystkim na ocenie efektywności funkcjonowania organizacji (szkół wyższych oraz banków). Jest autorem wielu cytowanych artykułów oraz współautorem wpływowych książek, w tym: Performance Indicators in Higher Education (1990) oraz International Handbook on the Economics of Education (2004). Dzięki swojej pracy naukowej zyskała reputacje i prestiż w dziedzinie badań nad efektywnością edukacji. Współredagowała specjalne wydanie czasopisma Journal of the Operational Research Society (2016) poświęcone badaniom nad efektywnością edukacji. Współpracuje z wieloma organizacjami międzynarodowymi w zakresie badań nad efektywnością, była współorganizatorką konferencji: Efficiency in Education, Londyn 2014 oraz Efficiency in Education, Health and other Public Services, Huddersfield 2018

Bibliografia

  1. Abbott, M. i Doucouliagos, C. (2003). The efficiency of Australian universities: A data envelopment analysis. Economics of Education Review. 22(1): 89–97.
  2. Ahn, T. i Seiford, L.M. (1993). Sensitivity of data envelopment analysis to models and variable sets in a hypothesis test setting: the efficiency of university operations (191–208). W: Y. Ijiri (red.), Creative and Innovative Approaches to the Science of Management. Westport, CT: Quorum Books.
  3. Ahn, T., Arnold, V., Charnes, A. i Cooper, W.W. (1989). DEA and ratio efficiency analyses for public institutions of higher learning in Texas. Research in Governmental and Nonprofit Accounting. 5: 165–185.
  4. Aigner, D.J., Lovell, C.A.K. i Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics. 6(1): 21–37.
  5. Aitkin, M. i Longford, N. (1986). Statistical modelling in school effectiveness studies. Journal of the Royal Statistical Society, Series A. 149: 1–43.
  6. Arcelus, F.J. i Coleman, D.F. (1997). An efficiency review of university departments. International Journal of Systems Science. 28(7): 721–729.
  7. Athanassopoulos, A.D. i Shale, E. (1997). Assessing the comparative efficiency of higher education institutions in the UK by means of data envelopment analysis. Education Economics. 5(2): 117–34.
  8. Avkiran, N.K. (2001). Investigating technical and scale efficiencies of Australian universities through data envelopment analysis. Socio-Economic Planning Sciences. 35(1): 57–80.
  9. Banker, R.D., Charnes, A. i Cooper, W.W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science. 30(9): 1078–1092.
  10. Banker, R.D., Charnes, A., Cooper, W.W., Swarts, J. i Thomas, D. (1989). An introduction to data envelopment analysis with some of its models and their uses. Research in Governmental and Nonprofit Accounting. 5: 125–163.
  11. Banker, R.D., Gadh, V.M. i Gorr, W.L. (1993). A Monte Carlo comparison of two production frontier estimation techniques: corrected ordinary least squares and data envelopment analysis. European Journal of Operational Research. 67: 332–343.
  12. Barrow, M. (1991). Measuring the Local Education Authority performance: A frontier approach. Economics of Education Review. 10(1): 19–27.
  13. Bates, J.M. (1993). The efficiency of Local Education Authorities. Oxford Review of Education. 19(3): 277–289.
  14. Bates, J.M. (1997). Measuring predetermined socio-economic “inputs” when assessing the efficiency of educational outputs. Applied Economics. 29(1): 85–93.
  15. Battese, G.E. i Coelli, T.J. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Economics. 20: 325–332.
  16. Beasley, J.E. (1990). Comparing university departments. Omega. 18: 171–183.
  17. Beasley, J.E. (1995). Determining the teaching and research efficiencies’, Journal of the Operational Research Society. 46(4): 441–452.
  18. Belfield, C.R. i Fielding, A. (2001). Measuring the relationship between resources and outcomes in higher education in the UK. Economics of Education Review. 20: 589–602.
  19. Bessent, A.M. i Bessent, E.W. (1980). Determining the comparative efficiency of schools through data envelopment analysis. Educational Administration Quarterly. 16(2): 57–75.
  20. Bessent, A.M., Bessent, E.W, Kennington, E.W. i Reagan, B. (1982). An application of mathematical programming to assess the productivity in the Houston independent school district. Management Science. 28: 1355–1367.
  21. Bifulco, R. i Bretschneider, S. (2001). Estimating school efficiency: A comparison of methods using simulated data. Economics of Education Review. 20: 417–429.
  22. Bonesrønning, H. i Rattsø, J. (1994). Efficiency variation among the Norwegian high schools: Consequences of equalization policy. Economics of Education Review. 13(4): 289–304.
  23. Bradley, S., Johnes, G. i Millington, J. (2001). The effect of competition on the efficiency of secondary schools in England. European Journal of Operational Research. 135: 545–568.
  24. Bratti, M. (2002). Does the choice of university matter? A study of the differences across UK universities in life sciences students’ degree performance. Economics of Education Review. 21: 431–443.
  25. Bratti, M., McKnight, A., Naylor, R. i Smith, J. (2004). Higher education outcomes, graduate employment and university performance indicators. Journal of the Royal Statistical Society: Series A. 167: 475–496.
  26. Breu, T.M. i Raab, R.L. (1994). Efficiency and perceived quality of the nation’s ‘Top 25’ national universities and national liberal arts colleges: An application of data envelopment analysis to higher education. Socio-Economic Planning Sciences. 28(1): 33–45.
  27. Chakraborty, K., Biswas, B. i Lewis, W.C. (2001). Measurement of technical efficiency in public education: A stochastic and nonstochastic production frontier approach. Southern Economics Journal. 67(4): 889–905.
  28. Chalos, P. (1997). An examination of budgetary inefficiency in education using data envelopment analysis. Financial Accountability and Management. 13(1): 55–69.
  29. Chalos, P. i Cherian, J. (1995). An application of data envelopment analysis to public sector performance measurement and accountability. Journal of Accounting and Public Policy. 14: 143–160.
  30. Charnes, A., Cooper, W.W. i Rhodes, E. (1978). Measuring the efficiency of DMUs. European Journal of Operational Research. 2: 429–444.
  31. Charnes, A., Cooper, W.W. i Rhodes, E. (1979). Measuring the efficiency of decision making units: A short communication. European Journal of Operational Research. 3(4): 339
  32. Chizmar, J.F. i Zak, T.A. (1983). Modeling multiple outputs in educational production functions. American Economic Review, Papers and Proceedings. 73(2): 18–22.
  33. Coelli, T., Rao, D.S.P. i Battese, G.E. (1998). An Introduction to Efficiency and Productivity Analysis. Norwell, MA: Kluwer Academic.
  34. Cubbin, J. i Tzanidakis, G. (1998). Regression versus data envelopment analysis for efficiency measurement: An application to the England and Wales regulated water industry. Utilities Policy. 7: 75–85.
  35. Cubbin, J. i Zamani, H. (1996). A comparison of performance indicators for Training and Enterprise Councils in the UK. Annals of Public Choice and Cooperative Economics. 67(4): 603–632.
  36. Dantzig, G.B. (1951). Maximization of a linear function of variables subject to linear inequalities. W: T.C. Koopmans (red.), Activity Analysis of Production and Allocation. New York: Wiley.
  37. Deller, S.C. i Rudnicki, E. (1993). Production efficiency in elementary education: The case of Maine public schools. Economics of Education Review. 12(1): 45–57.
  38. Diamond, A. i Medewitz, J.N. (1990). Use of data envelopment analysis in an evaluation of the efficiency of the DEEP program for economic education. Journal of Economic Education. 21: 337–354.
  39. Duncombe, W., Miner, J. i Ruggiero, J. (1997). Empirical evaluation and bureaucratic models of inefficiency. Public Choice. 93: 1–18.
  40. Dyson, R.G., Allen, R., Camanho, A.S., Podinovski, V.V., Sarrico, C.S. i Shale, E.A. (2001). Pitfalls and protocols in data envelopment analysis. European Journal of Operational Research. 132(2): 245–259.
  41. El-Mahgary, S. i Lahdelma, R. (1995). Data envelopment analysis: Visualizing the results. European Journal of Operational Research. 85: 700–710.
  42. Engert, F. (1996). The reporting of school district efficiency: The adequacy of ratio measures. Public Budgeting and Financial Management. 8(2): 247–271.
  43. Färe, R., Grosskopf, S. i Lovell, C.A.K. (1988). An indirect efficiency approach to the evaluation of producer performance. Journal of Public Economics. 37(1): 71–89.
  44. Färe, R., Grosskopf, S., Norris, M. i Zhang, Z. (1994). Productivity growth, technical progress and efficiency change in industrialized countries. American Economic Review. 84(1): 66–83.
  45. Färe, R., Grosskopf, S. i Weber, W.L. (1989). Measuring school district performance. Public Finance Quarterly. 17(4): 409–428.
  46. Farrell, M. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, Series A. 120: 253–281.
  47. Førsund, F.R., Lovell, C.A.K. i Schmidt, P. (1980). A survey of frontier production functions and of their relationship to efficiency measurement. Journal of Econometrics. 13: 5–25.
  48. Friedman, L. i Sinuany-Stern, Z. (1997). Scaling units via the canonical correlation analysis in the data envelopment analysis context. European Journal of Operational Research. 100: 629–637.
  49. Ganley, J.A. i Cubbin, J.S. (1992). Public Sector Efficiency Measurement: Applications of Data Envelopment Analysis. Amsterdam: North–Holland.
  50. Geva-May, I. (2001). Higher education and attainment of policy goals: Interpretations for efficiency indicators in Israel. Higher Education. 42(3): 265–305.
  51. Goldstein, H. (1995). Multilevel Statistical Models. London: Wiley and Sons.
  52. Goldstein, H. (1997). Methods in school effectiveness research. School Effectiveness and School Improvement. 8(4): 369–395.
  53. Goldstein, H. i Sammons, P. (1997). The influence of secondary and junior schools on sixteen year examination performance: A cross-classified multilevel analysis. School Effectiveness and School Improvement. 8(2): 219–230.
  54. Goldstein, H. i Spiegelhalter, D.J. (1996). League tables and their limitations: Statistical issues in comparisons of institutional performance. Journal of the Royal Statistical Society, Series A. 159(3): 385–443.
  55. Goldstein, H. i Thomas, S. (1996). Using examination results as indicators of school and college performance. Journal of the Royal Statistical Society, Series A. 159(1): 149–163
  56. Goldstein, H., Rabash, J., Yang, M., Woodhouse, G., Pan, H., Nuttall, D. i Thomasa, S. (1993). A multilevel analysis of school examination results. Oxford Review of Education. 19(4): 425–433.
  57. Gong, B.-H. i Sickles, R.C. (1992). Finite sample evidence on the performance of stochastic frontiers and data envelopment analysis using panel data. Journal of Econometrics. 51: 259–284.
  58. Gray, J., Jesson, D. i Jones, B. (1984). Predicting differences in examination results: Does school organisation matter? Oxford Review of Education. 10: 45–68.
  59. Grosskopf, S. (1996). Statistical inference and nonparametric efficiency: A selective survey’, Journal of Productivity Analysis. 7: 161–176.
  60. Grosskopf, S. i Moutray, C. (2001). Evaluating performance in Chicago public high schools in the wake of decentralization. Economics of Education Review. 20: 1–14.
  61. Häkkinen, I., Kirjavainen, T. i Uusitalo, R. (2003). School resources and student achievement revisited: New evidence from panel data. Economics of Education Review. 22(3): 329–335.
  62. Haksever, C. i Muragishi, Y. (1998). Measuring value in MBA programmes. Education Economics. 6(1): 11–25.
  63. Halme, M., Joro, T., Korhonen, P., Salo, S. i Wallenius, J. (1999). A value efficiency approach to incorporating preference information in data envelopment analysis. Management Science. 45: 103–115.
  64. Harrison, J. i Rouse, P. (2002). Measuring the performance of Auckland secondary schools: A pilot study using data envelopment analysis. http://orsnz.org.nz/conf37/Papers/Rouse.pdf [30.06.2018].
  65. Hashimoto, K. i Cohn, E. (1997). Economies of scale and scope in Japanese private universities. Education Economics. 5(2): 107–115.
  66. Izadi, H., Johnes, G., Oskrochi, R. i Crouchley, R. (2002). Stochastic frontier estimation of a CES cost function: The case of higher education in Britain. Economics of Education Review. 21: 63–71.
  67. Jesson, D., Mayston, D. i Smith, P. (1987). Performance assessment in the education sector: Educational and economic perspectives. Oxford Review of Education. 13: 249–267.
  68. Johnes, G. (1996). Multi-product cost functions and the funding of tuition in UK universities. Applied Economics Letters. 3(9): 557–561.
  69. Johnes, G. (1997). Costs and industrial structure in contemporary British higher education. Economic Journal. 107: 727–737.
  70. Johnes, G. (1998a). The costs of multiproduct organizations and the heuristic evaluation of industrial structure. Socio-Economic Planning Sciences. 32(3): 199–209.
  71. Johnes, G. (1998b). Corrigendum: Costs and industrial structure in contemporary British higher education. Economic Journal. 108: 1275.
  72. Johnes, G. (1999). The management of universities: Scottish Economic Society/Royal Bank of Scotland Annual Lecture. Scottish Journal of Political Economy. 46: 505–522.
  73. Johnes, G. i Johnes, J. (1992). Apples and oranges: The aggregation problem in publications analysis. Scientometrics. 25(2): 353–365.
  74. Johnes, G. i Johnes, J. (1993). Measuring the research performance of UK economics departments: An application of data envelopment analysis. Oxford Economic Papers. 45: 332–347.
  75. Johnes, J. (1990). Unit costs: Some explanations of the differences between UK universities. Applied Economics. 22: 853–862.
  76. Johnes, J. (1996). Performance assessment in higher education in Britain. European Journal of Operational Research. 89: 18–33.
  77. Johnes, J. (2003). Measuring teaching efficiency in higher education: An application of data envelopment analysis to graduates from UK universities 1993. Discussion paper EC7/03. Department of Economics, Lancaster University.
  78. Johnes, J. i Taylor, J. (1987). Degree quality: An investigation into differences between universities. Higher Education. 16: 581–602.
  79. Johnes, J. i Taylor, J. (1989a). Undergraduate non-completion rates: Differences between UK universities. Higher Education. 18: 209–225.
  80. Johnes, J. i Taylor, J. (1989b). The first destination of new graduates: Comparisons between universities. Applied Economics. 21(3): 357–374.
  81. Johnes, J. i Taylor, J. (1990). Performance Indicators in Higher Education: UK Universities. Milton Keynes: Open University Press and The Society for Research into Higher Education.
  82. Johnes, J. i Taylor, J. (1992). The 1989 research selectivity exercise: A statistical analysis of differences in research rating between universities at the cost centre level. Higher Education Quarterly. 46(1): 67–87.
  83. Johnes, J., Taylor, J. i Francis, B. (1993). The research performance of UK universities: A statistical analysis of the results of the 1989 research selectivity exercise. Journal of the Royal Statistical Society, Series A. 156(2): 271–286.
  84. Jondrow, J., Lovell, C.A.K., Materou, I.S. i Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics. 19: 233–238.
  85. Jones, J.T. i Zimmer, R.W. (2001). Examining the impact of capital on academic achievement. Economics of Education Review. 20: 577–588.
  86. Kang, B.-G. i Greene, K.V. (2002). The effects of monitoring and competition on public education outputs: A stochastic frontier approach. Public Finance Review. 30(1): 3–26.
  87. Kirjavainen, T. i Loikkanen, H.A. (1998). Efficiency differences of Finnish senior secondary schools: An application of data envelopment analysis and Tobit analysis. Economics of Education Review. 17(4): 377–394.
  88. Korhonen, P., Tainio, R. i Wallenius, J. (2001). Value efficiency analysis of academic research. European Journal of Operational Research. 130: 121–132.
  89. Lovell, C.A.K. (1993). Production frontiers and productive efficiency (3–67). W: H.O. Fried, C.A.K. Lovell i S.S. Schmidt (red.), The Measurement of Productive Efficiency. Oxford: Oxford University Press.
  90. Lovell, C.A.K., Walters, L.C. i Wood, L.L. (1994). Stratified models of education production using modified data envelopment analysis and regression analysis. W: A. Charnes, W.W. Cooper, A.Y. Lewin i L.M. Seiford (red.), Data Envelopment Analysis: Theory, Methodology and Applications. Dordrecht: Kluwer Academic.
  91. Madden, G., Savage, S. i Kemp, S. (1997). Measuring public sector efficiency: A study of economics departments at Australian Universities. Education Economics. 5(2): 153–167.
  92. Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos de Estatistica. 4: 209–242.
  93. Mancebon, M.J. i Bandrés, E. (1999). Efficiency evaluation in secondary schools: The key role of model specification and of ex post analysis of results. Education Economics. 7(2): 131–152.
  94. Mancebon, M.J. i Mar Molinero, C. (2000). Performance in primary schools. Journal of the Operational Research Society. 51(7): 843–854.
  95. Mante, B. (2001). Measuring the performance of state secondary schools in Victoria: An application of data envelopment analysis. Education Research and Perspectives. 28(1): 105–132.
  96. Mante, B. i O’Brien, G. (2002). Efficiency measurement of Australian public sector organisations: The case of state secondary schools in Victoria. Journal of Educational Administration. 40(3): 274–296.
  97. Mayston, D. i Jesson, D. (1988). Developing models of educational accountability. Oxford Review of Education. 14: 321–339.
  98. McCarty, T.A. i Yaisawarng, S. (1993). Technical efficiency in New Jersey school districts (271–287). W: H.O. Fried, C.A.K. Lovell i S.S. Schmidt (red.), The Measurement of Productive Efficiency. Oxford: Open University Press.
  99. Montmarquette, C., Mahseredjian, S. i Houle, R. (2001). The determinants of university dropouts: A bivariate probability model with sample selection. Economics of Education Review. 20(5): 475–484.
  100. Naylor, R., Smith, J. i McKnight, A. (2000). Occupational earnings of graduates: Evidence for the 1993 UK university population. Department of Economics, University of Warwick. https://www.researchgate.net/publication/228336591_Occupational_earnings_of_graduates_evidence_for_the_1993_UK_university_population [30.06.2018].
  101. Naylor, R., Smith, J. i McKnight, A. (2002). Why is there a graduate earnings premium for students from independent schools? Bulletin of Economic Research. 54(4): 315–340.
  102. Norman, M. i Stoker, B. (1991). Data Envelopment Analysis: The Assessment of Performance. Chichester: Wiley.
  103. Ondrich, J. i Ruggiero, J. (2001). Efficiency measurement in the stochastic frontier model. European Journal of Operational Research. 129: 434–442.
  104. Pedraja-Chaparro, F., Salinas-Jimenez, J. i Smith, P. (1999). On the quality of the data envelopment analysis model. Journal of the Operational Research Society. 50: 636–644.
  105. Peraita, C. i Sanchez, M. (1998). The effect of family background on children’s level of schooling and attainment in Spain. Applied Economics. 30: 1327–1334.
  106. Portela, M.C.A.S. i Thanassoulis, E. (2001). Decomposing school and school-type efficiency. European Journal of Operational Research. 132(2): 357–373.
  107. Ramanathan, R. (2001). A data envelopment analysis of comparative performance of schools in the Netherlands. Opsearch. 38(2): 160–182.
  108. Ray, S.C. (1991). Resource use efficiency in public schools: A study of Connecticut data. Management Science. 37: 1620–1628.
  109. Ruggiero, J. (1996). On the measurement of technical efficiency in the public sector. European Journal of Operational Research. 90: 553–565.
  110. Ruggiero, J. (2000). Nonparametric estimation of returns to scale in the public sector with an application to the provision of educational services. Journal of the Operational Research Society. 51: 906–912.
  111. Ruggiero, J. i Vitaliano, D.F. (1999). Assessing the efficiency of public schools using DEA and frontier regression. Contemporary Economic Policy. 17(3): 321–331.
  112. Sammons, P., Nuttall, D. i Cuttance, D. (1993). Differential school effectiveness: Results from a reanalysis of the Inner London Education Authority’s junior school project data. British Educational Research Journal. 19: 381–405.
  113. Sarrico, C.S. i Dyson, R.G. (2000). Using data envelopment analysis for planning in UK universities – an institutional perspective. Journal of the Operational Research Society. 51: 789–800.
  114. Sarrico, C.S., Hogan, S.M., Dyson, R.G. i Athanassopoulos, A.D. (1997). Data envelopment analysis and university selection. Journal of the Operational Research Society. 48: 1163–1177.
  115. Schmidt, P. (1985/1986). Frontier production functions. Econometric Reviews. 4(2): 289–328.
  116. Sengupta, J.K. (1987). Production frontier estimation to measure efficiency: A critical evaluation in light of data envelopment analysis. Managerial and Decision Economics. 8: 93–99.
  117. Sengupta, J.K. (1990). Tests of efficiency in DEA. Computers Operations Research. 17(2): 123–132.
  118. Sengupta, J.K. (1999). The measurement of dynamic productive efficiency. Bulletin of Economic Research. 51(2): 111–124.
  119. Sengupta, J.K. i Sfeir, R.E. (1986). Production frontier estimates of scale in public schools in California. Economics of Education Review. 5(3): 297–307.
  120. Sengupta, J.K. i Sfeir, R.E. (1988). Efficiency measurement by data envelopment analysis with econometric applications. Applied Economics. 20: 285–293.
  121. Sickles, R.C., Good, D.H. i Getachew, L. (2002). Specification of Distance Functions Using Semi- and Nonparametric Methods with an Application to the Dynamic Performance of Eastern and Western European Air Carriers. Journal of Productivity Analysis. 17(1–2): 133–155 .
  122. Simar, L. i Wilson, P.W. (1998). Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Management Science. 44(1): 49–61.
  123. Simar, L. i Wilson, P.W. (2004). Performance of the Bootstrap for DEA Estimators and Iterating the Principle (265–298). W: W.W. Cooper, L.M. Seiford i J. Zhu (red.), Handbook on Data Envelopment Analysis. New York: Springer.
  124. Smith, J. i Naylor, R. (2001a). Dropping out of university: A statistical analysis of the probability of withdrawal for UK university students. Journal of the Royal Statistical Society, Series A. 164(2): 389–405.
  125. Smith, J. i Naylor, R. (2001b). Determinants of degree performance in UK universities: A statistical analysis of the 1993 student cohort. Oxford Bulletin of Economics and Statistics. 63: 29–60.
  126. Smith, J., McKnight, A. i Naylor, R. (2000). Graduate employability: Policy and performance in higher education in the UK. Economic Journal. 110: F382–F411.
  127. Smith, P. i Mayston, D. (1987). Measuring efficiency in the public sector. Omega. 15: 181–189.
  128. Soteriou, A., Karahanna, E., Papanastasiou, C. i Diakourakis, M.S. (1998). Using data envelopment analysis to evaluate the efficiency of secondary schools: The case of Cyprus. International Journal of Educational Management. 12(2): 65–73.
  129. Stevens, P.A. (2001). The determinants of economic efficiency in English and Welsh universities. Discussion paper no. 185. National Institute of Economic and Social Research, London.
  130. Thanassoulis, E. (1996). Altering the bias in differential school effectiveness using data envelopment analysis. Journal of the Operational Research Society. 47: 882–894.
  131. Thanassoulis, E. (1999). Setting achievement targets for school children. Education Economics. 7(2): 101–119.
  132. Thanassoulis, E. i Dunstan, P. (1994). Guiding schools to improved performance using data envelopment analysis: An illustration with data from a local education authority. Journal of the Operational Research Society. 45(11): 1247–1262.
  133. Thanassoulis, E. i Portela, M.C.A.S. (2002). School outcomes: Sharing the responsibility between pupil and school. Education Economics. 10(2): 183–207.
  134. Thanassoulis, E., Simpson, G., Battisti, G. i Charlesworth-May, A. (2003). DEA and multi- level modelling as alternative methods for assessing pupil and school performance. Discussion Paper. Aston Business School.
  135. Tomkins, C. i Green, R. (1988). An experiment in the use of DEA for evaluating the efficiency of UK university departments of accounting. Financial Accountability and Management. 4(2): 147–164.
  136. Woodhouse, G. i Goldstein, H. (1988). Educational performance indicators and LEA league tables. Oxford Review of Education. 14: 301–319.
  137. Worthington, A. (2001). An empirical survey of frontier efficiency measurement techniques in education. Education Economics. 9(3): 245–268.
  138. Yang, M. i Woodhouse, G. (2001). Progress from GCSE to A and AS level: Institutional differences and gender differences, and trends over time. British Educational Research Journal. 27(3): 24–46.
  139. Yang, M., Goldstein, H., Browne, W. i Woodhouse, G. (2002). Multivariate multilevel analyses of examination results. Journal of the Royal Statistical Society, Series A. 165(1): 137–153.
  140. Yang, M., Goldstein, H., Rath, T. i Hill, N. (1999). The use of assessment data for school improvement purposes. Oxford Review of Education. 25(4): 469–483.