Abstract
The focus of this research is on the spatial evolution of the built environment within the Greater Poland Voivodeship, spanning from 2014 to 2023. The recent amendments to legal frameworks governing spatial planning in Poland are designed to mitigate the emergence of uncoordinated and haphazard development, promoting instead the formation of densely urbanized areas. Within this context, the purpose of this study is to assess the evolution of construction activities in Greater Poland, specifically evaluating whether they have resulted in more compact clusters or if new developments have exacerbated urban sprawl. To achieve this, a comparative analysis of the built environment in 2014 versus 2023 was performed utilizing the DBSCAN algorithm. This algorithm is a density-based clustering method that identifies areas with a higher density of structures relative to their surroundings. For the purposes of this analysis, criteria were set to a minimum of 500 buildings, with a maximum permissible inter-structure distance of 1,000 meters. Building data was sourced from the BDOT10k database. The analysis revealed a 10% growth in the built-up area across Greater Poland from 2014 to 2023, with an approximately 20% rise in the number of buildings forming clusters and a 2% rise in those outside clusters. However, when focusing on newly erected structures, findings indicate that nearly 60% of these new constructions formed clusters with pre-existing buildings, whereas around 40% were dispersed. Despite the fact that cluster formation prevails and a trend towards more compact grouping is evident with a diminishing proportion of non-clustered structures, the fact that over 40% of new facilities are situated significantly apart from existing developments underscores the imperative to further restrict uncontrolled expansion. Implementing new tools, such as designated infill development areas within general plans, may effectively mitigate urban sprawl.
References
Abhishek J. 2025. UML Part 6 – OPTICS Clustering (https://medium.com/@abhishekjainindore24/uml-part-6-optics-clustering-3f6f74ad121b).
AlHasawi M., Maatouk M.M.H., Qurunfulah E. 2024. Key Success Factors of Urban Infill Development: A Conceptual Framework. European Journal of Architecture and Urban Planning, 3(3): 9-17. DOI: https://doi.org/10.24018/ejarch.2024.3.3.40
Bajwoluk T. 2020. Przestrzeń podmiejska. Wybrane zagadnienia struktury funkcjonalno-przestrzennej. Wydawnictwo PK.
Baza Danych Obiektów Topograficznych (BDOT10k) (https://www.geoportal.gov.pl/pl/dane/baza-danych-obiektow-topograficznych-bdot10k/).
Bittencourt J.C.N., Costa D.G., Portugal P., Peixoto M.L.M., Vasques F. 2025. On the spatiotemporal knowledge-driven vulnerability assessment of urban areas: A clustering-based approach. International Journal of Disaster Risk Reduction, 127 (wrzesień): 105681. DOI: https://doi.org/10.1016/j.ijdrr.2025.105681
Caudillo-Cos C.A., Montejano-Escamilla J.A., Tapia-McClung R., Ávila-Jiménez F.G., Barrera-Alarcón I.G. 2024. Defining urban boundaries through DBSCAN and Shannon’s entropy: The case of the Mexican National Urban System. Cities, 149 (czerwiec): 104969. DOI: https://doi.org/10.1016/j.cities.2024.104969
Chettry V. 2023. A Critical Review of Urban Sprawl Studies. Journal of Geovisualization and Spatial Analysis, 7(2): 28. DOI: https://doi.org/10.1007/s41651-023-00158-w
Dadashpoor H., Shahhossein G. 2024. Defining urban sprawl: A systematic review of 130 definitions. Habitat International, 146 (kwiecień): 103039. DOI: https://doi.org/10.1016/j.habitatint.2024.103039
Dawid M., Wojciech D., Kudłacz K. 2023. Suburbanizacja w Polsce i jej konsekwencje. Perspektywa badawcza i analityczna zjawiska. Barometr Regionalny. Analizy i Prognozy, 19(2): 157-70. DOI: https://doi.org/10.56583/br.2271
Drabicki A., Grythe H., Lopez-Aparicio S., Górska L., Gzyło C., Pyzik M. 2025. Modelling the influence of suburban sprawl vs. compact city development upon road network performance and traffic emissions. Transportation Research Procedia, 86: 371-378. DOI: https://doi.org/10.1016/j.trpro.2025.04.047
Ester M., Kriegel H.-P., Sander J., Xu X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 226-231.
Główny Urząd Statystyczny (GUS). Bank Danych Lokalnych (https://bdl.stat.gov.pl/BDL/start).
Goździewicz-Biechońska J. 2018. Prawne uwarunkowania suburbanizacji (urban sprawl) w Polsce. Samorząd Terytorialny, 86-97.
Hajihosseinlou M., Maghsoudi A., Ghezelbash R. 2024. A comprehensive evaluation of OPTICS, GMM and K-means clustering methodologies for geochemical anomaly detection connected with sample catchment basins. Geochemistry, 84(2): 126094. DOI: https://doi.org/10.1016/j.chemer.2024.126094
Imbrenda V., Coluzzi R., Bianchini L., Di Stefano V., Salvati L. 2022. Urban sprawl: Theory and practice. Urban Soil and Water Degradation, 8. DOI: https://doi.org/10.1016/bs.apmp.2022.10.017
Koliński K. 2024. Plan ogólny gminy. Potencjalne narzędzie ochrony gruntów rolnych. Wieś i Rolnictwo, 2(203) (sierpień): 85-99. DOI: https://doi.org/10.53098/wir.2024.2.203/04
Kryczka P., Sikorski D., Figlus T., Lisowska-Kierepka A., Musiaka Ł., Spórna T., Sudra P., Szmytkie R. 2025. Defining suburbanization in Central and Eastern Europe: A systematic literature review. Cities, 158: 105626. DOI: https://doi.org/10.1016/j.cities.2024.105626
Łabuz R., Blazy R., Hess D.B. 2025. Identifying urban development clusters in southern Poland using the DBSCAN algorithm for spatial analysis. Town Planning Review. DOI: https://doi.org/10.3828/tpr.2025.32
Łowicki D. 2008. Land use changes in Poland during transformation. Landscape and Urban Planning, 87(4): 279-288. DOI: https://doi.org/10.1016/j.landurbplan.2008.06.010
Ma B., Yang C., Li A., Chi Y., Chen L. 2023. A Faster DBSCAN Algorithm Based on Self-Adaptive Determination of Parameters. Procedia Computer Science, 221: 113-120. DOI: https://doi.org/10.1016/j.procs.2023.07.017
McInnes L., Healy J. 2017. Accelerated Hierarchical Density Based Clustering. 2017 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, s. 33-42. DOI: https://doi.org/10.1109/ICDMW.2017.12
Migdał-Najman K., Najman K. 2013. Analiza porównawcza wybranych metod analizy skupień w grupowaniu jednostek o złożonej strukturze grupowej. Zarządzanie i Finanse, 179-194.
Migerode C. van, Samardzhiev K., Caset F. 2025. The fewer predefined parameters, the better? A comparative analysis of urban delineation methods using building footprint data in the Netherlands. International Journal of Geographical Information Science, 39(8): 1727-1749. DOI: https://doi.org/10.1080/13658816.2025.2469240
Ministerstwo Rozwoju i Technologii. 2023. Reforma systemu planowania przestrzennego (https://www.gov.pl/web/rozwoj-technologia/reforma-systemu-planowania-przestrzennego).
Mitchell A., Griffin L.S. 2021. The Esri Guide to GIS Analysis. Spatial Measurements and Statistics. Second Ed. T. 2. Esri Press.
Mrozek J. 2024. Plan ogólny gminy – charakterystyka i zagadnienia problemowe. Samorząd Terytorialny, 6: 54-64.
Nagy G., Hegedűs T. 2016. Urban sprawl or/and suburbanisation? Belvedere Meridionale, 28(3): 106-119. DOI: https://doi.org/10.14232/belv.2016.3.8
Pradhan K., Rajabifard A., Aryal J., Crompvoets J. 2025. Dissecting multidimensional morphology of urban sprawl: Framework for policy intervention. Cities, 157 (luty): 105627. DOI: https://doi.org/10.1016/j.cities.2024.105627
Rosati R.M. 2025. Urban Sprawl and Routing: A Comparative Study on 156 European Cities. Landscape and Urban Planning, 253: 105-205. DOI: https://doi.org/10.1016/j.landurbplan.2024.105205
Rozporządzenie Ministra Rozwoju i Technologii z dnia 2 maja 2024 r. w sprawie sposobu wyznaczania obszaru uzupełnienia zabudowy w planie ogólnym gminy. 2024 (https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20240000729).
Schubert E., Sander J., Ester M., Kriegel H.P., Xu X. 2017. DBSCAN Revisited, Revisited. ACM Transactions on Database Systems, 42(3): 1-21. DOI: https://doi.org/10.1145/3068335
Sługocka M. 2025. Decyzja o warunkach zabudowy po reformie planistycznej. Materiały Budowlane, 2: 83-86.
Sudra P. 2020. Rozpraszanie i koncentracja zabudowy na przykładzie aglomeracji warszawskiej po 1989 roku. Instytut Geografii i Przestrzennego Zagospodarowania im. Stanisława Leszczyckiego, Polska Akademia Nauk.
Szewczyk E., Szewczyk M. 2024. Plan ogólny – nowy (stary) instrument planowania przestrzennego. E-Wydawnictwo. Prawnicza i Ekonomiczna Biblioteka Cyfrowa, Wydział Prawa, Administracji i Ekonomii Uniwersytetu Wrocławskiego, Wrocław.
Tikoudis I., Farrow K., Mebiame R.M., Oueslati W. 2022. Beyond average population density: Measuring sprawl with density-allocation indicators. Land Use Policy, 112: 105832. DOI: https://doi.org/10.1016/j.landusepol.2021.105832
Ustawa z dnia 7 lipca 2023 r. o zmianie ustawy o planowaniu i zagospodarowaniu przestrzennym oraz niektórych innych ustaw. 2023 (https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20230001688).
Vázquez F.I., Zseby T., Zimek A. 2025. Parameterization-free clustering with sparse data observers. Information Systems, 133 (sierpień): 102562. DOI: https://doi.org/10.1016/j.is.2025.102562
Wdowiarz-Bilska M., Ciepiela A., Łabuz R. 2024. The transformation of countryside into a dispersed city: a critical local-scale analysis of selected Polish suburbs. Bulletin of Geography. Socio-economic Series, 66 (listopad). DOI: https://doi.org/10.12775/bgeo-2024-0031
Zhang H. 2021. The Impact of Urban Sprawl on Environmental Pollution: Empirical Analysis from Large and Medium-Sized Cities of China. International Journal of Environmental Research and Public Health, 18(16): 8650. DOI: https://doi.org/10.3390/ijerph18168650
License
Copyright (c) 2025 Rita Łabuz

This work is licensed under a Creative Commons Attribution 4.0 International License.
