Visual Exposure Index as landscape vantage points location decision support tool: the Szczebrzeszyński Landscape Park case study
pdf (Język Polski)

Keywords

visual exposure index
vantage points
Szczebrzeszyński Landscape Park
landscape physiognomic resources
cultural ecosystem services

How to Cite

Chmielewski, S., & Grabowski, T. (2023). Visual Exposure Index as landscape vantage points location decision support tool: the Szczebrzeszyński Landscape Park case study. Rozwój Regionalny I Polityka Regionalna, 14(63), 191–206. https://doi.org/10.14746/rrpr.2023.63.11

Abstract

Landscape vantage points constitute the basic visual resource of the landscape, enable observation of panoramic panoramas, and thus cultural ecosystem services flows. The panoramic view is the tourist destination itself, therefore the functioning of the vantage points is related to the network of tourist routes. The optimization of the network of vantage points is a key issue of tourist function management as well as landscape physiognomic resources protection. The GIS-based visibility analysis is the most appreciated regarding landscape visual resources; it has theoretical and practical explanations. Theoretically, despite its multi-sensory character, the landscape can be regarded as “areas, as perceived by people”. In consequence, this puts a privilege to GIS software because, since the very beginning of its development, the viewshed algorithm computes the visible area and its reverse version (reverse viewshed) computes the area of visibility. This study applies reverse viewshed in search of landscape vantage points. The study aims to propose the methodology of visual exposure indicator (VEI) calculation, which is a geo-information supporting tool of the vantage point optimization process. The VEI values describe the given place’s suitability for vantage point location in terms of view panorama exposition conditions, which, combined with information about tourist routes, enables the vantage point location optimization. The VEI spatial variability analysis also allows for locating the vantage points so far not pointed on the tourist maps. The study was carried out on the example of the Szczebrzeszyński Landscape Park, as a result, it was proposed to expand the existing network up to 45 viewpoints. The resulting visual landscape resources quantification cannot be equated with visual landscape character and quality assessment; however, the proposed GIS framework provides objective results that precisely localize and measure them. The conclusions and limitations of the method were discussed in the context of geocomputation as well as the landscape conservation plans practises.

https://doi.org/10.14746/rrpr.2023.63.11
pdf (Język Polski)

References

Bartkowski T. 1985. Nowy etap dyskusji nad pojęciem krajobrazu. Czasopismo Geograficzne, 51(1): 73-79

Batty M. 2001. Exploring isovist fields: Space and shape in architectural and urban morphology. Environment and Planning, B, 28(1): 123-150. DOI: https://doi.org/10.1068/b2725

Benedikt M.L. 1979. To Take Hold of Space: Isovists and Isovist Fields. Environ. Plan., B, 6: 47-65. DOI: https://doi.org/10.1068/b060047

Chmielewski S. 2021. Operat ochrony walorów krajobrazowych Szczebrzeszyńskiego Parku Krajobrazowego. Narodowa Fundacja Ochrony Środowiska oraz Uniwersytet Marii-Curie Skłodowskiej, Warszawa (mat. niepublikowane).

Chmielewski S., Bochaniak A., Natapow A., Węzyk P. 2020. Intoducing geobia landscape imageability - A Multi-Temporal Case Study of the Nature Reserve “Kózki”, Poland. Remote Sens., 12, 2792. DOI: https://doi.org/10.3390/rs12172792

Chvátal V. 1975. A combinatorial theorem in plane geometry. J. Combin. Theory, B, 18: 39-41. DOI: https://doi.org/10.1016/0095-8956(75)90061-1

CICE v 5.1. Common International Classification of Ecosystem (https://cices.eu; dostęp: 20.10.2022).

Costanza R., d’Arge R., de Groot R. 1997. The value of the world’s ecosystem services and natural capital. Nature, 387: 253-260. DOI: https://doi.org/10.1038/387253a0

Dean D.J. 1997. Improving the accuracy of forest viewsheds using triangulated networks and the visual permeability method. Canadian Journal of Forest Research, 27: 969-977. DOI: https://doi.org/10.1139/x97-062

Doherty M.F. 1984. Computation of Minimal Isovist Sets. Technical Rapport. Maryland University College Park Centre for Automation Research (ADA157624), 89 (https://apps.dtic.mil/sti/citations/ADA157624; dostęp: 2.10.2022).

Fang X., Zhao W., Fu B., Ding J. 2015. Landscape service capability, landscape service flow and landscape service demand: A new framework for landscape services and its use for landscape sustainability assessment. Progress in Physical Geography, 39: 817-836. DOI: https://doi.org/10.1177/0309133315613019

Felleman J. 1979. Landscape visibility mapping, theory and practice. School of Landscape Architecture, SUNY, College of Environmental Science and Forestry, New York.

Fisher P. 1996. Extending the applicability of viewsheds in landscape planning. Photogrammetric Engineering and Remote Sensing, 62: 1297-1302.

Fry G., Tveit M., Ode Å., Velarde M. 2009. The ecology of visual landscapes: Exploring the conceptual common ground of visual and ecological landscape indicators. Ecological Indicators, 9(5): 933-947. DOI: https://doi.org/10.1016/j.ecolind.2008.11.008

Gallagher G.L. 1972. A computer topographic model for determining intervisibility. [W:] P. Brock (red.), The Mathematics of Large Scale Simulation. Simulation Councils, La Jolla, CA, s. 3-16.

Heidemann K. 2014. Lidar base specification (ver. 1.2, November 2014): U.S. Geological Survey Techniques and Methods, book 11, chap. B4.

Honsberger R. 1976. Mathematical Gems II. MAA, Toronto, Canada. DOI: https://doi.org/10.1090/dol/002

ISOK 2012. Informatyczny System Osłony Kraju. Główny Urząd Geodezji i Kartografii, Warszawa (dane pomiarowe udostępniane za pośrednictwem strony geoportal.gov.pl; dostęp: 2.09.2020).

Kartpol. 2005. Szczebrzeszyński Park Krjobrazowy, mapa turystyczno-przyrodnicza 1:50 000. Wydawnictwo Kartpol, Lublin.

Llobera M. 2003. Extending GIS-based visual analysis: the concept of visualscapes. International Journal of Geographical Information Science, 17(1): 25-48. DOI: https://doi.org/10.1080/713811741

Longley P., Godchild M., Maguire D., Rhind D. 2006. GIS. Teoria i praktyka. Wyd. Naukowe PWN, Warszawa.

Natapov A., Czamanski D., Fisher-Gewirtzman D. 2013. Can visibility predict location? Visibility graph of food and drink facilities in the city. Survey Review, 45(333): 462-471. DOI: https://doi.org/10.1179/1752270613Y.0000000057

Ozimek P. 2002. Zastosowanie algorytmów światła lokalnego w wyznaczaniu wykresów widoczności. Politechnika Krakowska (rozprawa doktorska, promotor: A. Bohm).

Ozimek P., Ozimek A. 2009. Badanie chłonności krajobrazowej przy użyciu przestrzennego modelu cyfrowego. Nauka Przyroda Technologie, 3(1): 1-13.

Rana S. 2006. Isovist Analyst - An Arcview extension for planning visual surveillance. ESRI International User Conference. ESRI (on CD-ROM): 380 New York Street, Redlands, CA 92373-8100, USA.

Raszeja E., Szczepańska M., Gałecka-Drozda A., de Mezer E., Wikaniec A. 2022. Ochrona i kształtowanie krajobrazu kulturowego w zintegrowanym planowaniu rozwoju. Bogucki Wydawnictwo Naukowe, Poznań.

Senaratne H., Bröring A., Schreck T. 2013. Using reverse viewshed analysis to assess the location correctness of visually generated VGI. Transactions in GIS, 17(3): 369-386. DOI: https://doi.org/10.1111/tgis.12039

Shi X., Xue B. 2016. Deriving a minimum set of viewpoints for maximum coverage over any given digital elevation model data. International Journal of Digital Earth, 9(12): 1153-1167. DOI: https://doi.org/10.1080/17538947.2016.1207718

Turner A., Doxa M., O’Sullivan D., Penn A. 2001. From isovists to visibility graphs: A methodology for the analysis of architectural space. Environment and Planning, B, 28(1): 103-121. DOI: https://doi.org/10.1068/b2684

Tveit M., Ode Å., Fry G. 2006. Key concepts in a framework for analysing visual landscape character. Landscape Research, 31(3): 229-255. DOI: https://doi.org/10.1080/01426390600783269

Wang Y., Dou W. 2020. A fast candidate viewpoints filtering algorithm for multiple viewshed site planning. Int. J. Geogr. Inf. Sci., 34: 448-463. DOI: https://doi.org/10.1080/13658816.2019.1664743

Yaagoubi R., Yarmani M., Kame A., Khemiri W. 2015. HybVOR: A voronoi-based 3D GIS approach for camera surveillance network placement. ISPRS International Journal of Geo-Information, 4(2): 754-782. DOI: https://doi.org/10.3390/ijgi4020754

Yu T. i in. 2016. A new algorithm based on region partitioning for filtering candidate viewpoints of a multiple viewshed. International Journal of Geographical Information Science, 30(11): 2171-2187. DOI: https://doi.org/10.1080/13658816.2016.1163571