Czy autokorelacja przestrzenna ma znaczenie w kontekście planowania i oceny zrównoważonego rozwoju regionalnego?
PDF (English)

Słowa kluczowe

PM10
Polska
autokorelacja przestrzenna
zrównoważony rozwój regionalny
losowy dobór próby metodą tesalacji warstwowej
tessellation stratified random sampling

Jak cytować

Griffith, D. A. (2023). Czy autokorelacja przestrzenna ma znaczenie w kontekście planowania i oceny zrównoważonego rozwoju regionalnego?. Rozwój Regionalny I Polityka Regionalna, (65), 13–35. https://doi.org/10.14746/rrpr.2023.65.03

Abstrakt

Dążenie do osiągnięcia różnych wymiarów zrównoważonego rozwoju zobowiązuje władze społeczne do zaangażowania się w bardziej gruntowne monitorowanie zbiorowej podaży i popytu, m.in. w sferze ekonomicznej, szczególnie w kontekście geograficznym. W rezultacie, nakłady i wydajność na które ma to wpływ, jak również zasoby/towary/usługi do wykorzystania oraz generowane odpady, które występują i są oznaczone pośrednio lub bezpośrednio w przestrzeni geograficznej, są wyraźnymi nośnikami autokorelacji przestrzennej. Wykorzystanie tej prawie wszechobecnej właściwości danych georeferencyjnych pociąga za sobą możliwość wspierania wydajnych i skutecznych przedsięwzięć w zakresie zrównoważonego rozwoju. Losowy dobór próby metodą tesalacji warstwowej w celu monitorowania zanieczyszczenia środowiska nawiązuje do jednego z przykładów tego twierdzenia. Artykuł ilustruje ten przykład poprzez analizę jakości powietrza w Polsce w 2023 roku. W ten sposób struktura oparta na wyidealizowanych tesalacjach zostaje przełożona na strukturę polskich okręgów administracyjnych; to przekształcenie metodologiczne umożliwia organizacjom rządowym uczestniczenie w każdym planowanym monitorowaniu oraz jego nadzorowaniu bez dodatkowych komplikacji prawnych. Przypadkowe odkrycia naukowe obejmują wstępne rozszerzenie zbioru standardowych kształtów wielokątów (np. kwadratów i sześciokątów) o trapezy w celu pobrania próbek przestrzennych oraz ewentualność, że wpływ autokorelacji przestrzennej na statystyki oparte na projektach może mieć znaczną przewagę nad naruszeniem konwencjonalnego przykazania zrównoważonego losowego pobierania próbek. Wniosek jaki się nasuwa w trakcie analiz streszczonych w niniejszej publikacji dowodzi, że autokorelacja przestrzenna ma znaczenie w planowaniu i ocenie zrównoważonego rozwoju regionalnego.

https://doi.org/10.14746/rrpr.2023.65.03
PDF (English)

Bibliografia

Banaszak M., Górnisiewicz K., Nijkamp P., Ratajczak W. 2023. Fractal dimension complexity of gravitation fractals in central place theory. Scientific Reports, 13(1): 2343 (12 pp.). DOI: https://doi.org/10.1038/s41598-023-28534-y

Bäsel, U. 2021. The moments of the distance between two random points in a regular polygon (https://arxiv.org/abs/2101.03815).

Bhardwaj G., Kumar A. 2019. The comparison of shape indices and perimeter interface of selected protected areas especially with reference to Sariska Tiger Reserve, India. Global Ecology and Conservation, 17: e00504 (10 pp.). DOI: https://doi.org/10.1016/j.gecco.2018.e00504

Birch C., Oom S., Beecham J. 2007. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological Modelling, 206(3-4): 347-359. DOI: https://doi.org/10.1016/j.ecolmodel.2007.03.041

Bradley J., Zaucha J. (eds.) 2017. Territorial Cohesion: A Missing Link Between Economic Growth and Welfare – Lessons from the Baltic Tiger. Uniwersytet Gdański, Gdańsk.

Brown T., Wood J., Griffith D. 2017. Using spatial autocorrelation analysis to guide mixed methods survey sample design decisions. Journal of Mixed Methods Research, 11(3): 394-414. DOI: https://doi.org/10.1177/1558689815621438

Brundtland G. 1987. Our Common Future: Report of the World Commission on Environment and Development.: United Nations UN – Dokument A/42/427, Geneva.

Carr D., Olsen A., White D. 1992. Hexagon mosaic maps for display of univariate and bivariate geographical data. Cartography and Geographic Information Systems, 19(4): 228-236. DOI: https://doi.org/10.1559/152304092783721231

Chen Y. 2020. Two sets of simple formulae to estimating fractal dimension of irregular boundaries. Mathematical Problems in Engineering: Article ID 7528703 (15 pp.). DOI: https://doi.org/10.1155/2020/7528703

Devuyst D. 2000. Linking impact assessment and sustainable development at the local level: the introduction of sustainability assessment systems. Sustainable Development, 8(2): 67-78. DOI: https://doi.org/10.1002/(SICI)1099-1719(200005)8:2<67::AID-SD131>3.0.CO;2-X

Dočekalová M., Kocmanová A., Koleňák J. 2015. Determination of economic indicators in the context of corporate sustainability performance. Business: Theory and Practice/Verslas: Teorija ir Praktika, 16(1): 15-24. DOI: https://doi.org/10.3846/btp.2015.450

Fages D., Cerda M. 2022. Migration and social preferences. Economics Letters, 218: 110773 (6 pp.). DOI: https://doi.org/10.1016/j.econlet.2022.110773

Frank B., Monleon V. 2021. Comparison of variance estimators for systematic environmental sample surveys: considerations for post-stratified estimation. Forests, 12(6): 772 (20 pp.). https://www.mdpi.com/1999-4907/12/6/772 DOI: https://doi.org/10.3390/f12060772

Graymore M., Sipe N., Rickson R. 2008. Regional sustainability: How useful are current tools of sustainability assessment at the regional scale? Ecological Economics, 67(3): 362-372. DOI: https://doi.org/10.1016/j.ecolecon.2008.06.002

Griffith D. 2005. Effective geographic sample size in the presence of spatial autocorrelation. Annals of the Association of American Geographers, 95(4): 740-760. DOI: https://doi.org/10.1111/j.1467-8306.2005.00484.x

Griffith D. 2013. Establishing qualitative geographic sample size in the presence of spatial autocorrelation. Annals of the Association of American Geographers, 103(5): 1107-1122. DOI: https://doi.org/10.1080/00045608.2013.776884

Griffith D. 2015. Approximation of Gaussian spatial autoregressive models for massive regular square tessellation data. International Journal of Geographical Information Science, 29(12): 2143-2173. DOI: https://doi.org/10.1080/13658816.2015.1068318

Griffith D. 2020. A family of correlated observations: From independent to strongly interrelated ones. Stats, 3(3): 166-184. DOI: https://doi.org/10.3390/stats3030014

Griffith D. 2023. Spatial autocorrelation in geospatial disease data: An important global epidemiologic/public health assessment ingredient. Transactions in GIS, 27(3): 730-751. DOI: https://doi.org/10.1111/tgis.13042

Griffith D., Agarwal K., Chen M., Lee C., Panetti E., Rhyu K., Venigalla L., Yu X. 2022a, b. Geospatial socio-economic/demographic data: the masking of negative by, and existence of, mixtures of spatial autocorrelation in georeferenced data: Part I and Part II. Transactions in GIS, 26(1): 72–87 & 26(1): 88-99. DOI: https://doi.org/10.1111/tgis.12834

Griffith D., Morris E., Thakar V. 2016. Spatial autocorrelation and qualitative sampling: The case of snowball type sampling designs. Annals of the American Association of Geographers, 106(4): 773-787. DOI: https://doi.org/10.1080/24694452.2016.1164580

Griffith D., Liau Y. 2021. Imputed spatial data: cautions arising from response and covariate imputation measurement error. Spatial Statistics, 42: 100419 (12 pp.). DOI: https://doi.org/10.1016/j.spasta.2020.100419

Griffith D., Plant R. 2022. Statistical analysis in the presence of spatial autocorrelation: selected sampling strategy effects. Stats, 5(4): 1334-1353. DOI: https://doi.org/10.3390/stats5040081

Hart J.E., Källberg H., Laden F., Costenbader K.H., Yanosky J.D., Klareskog L., Alfredsson L., Karlson E.W. 2013. Ambient air pollution exposures and risk of rheumatoid arthritis. Arthritis Care & Research, 65(7): 1190-1196. DOI: https://doi.org/10.1002/acr.21975

Martin G., Webster S. 2020. Does residential sorting explain geographic polarization? Political Science Research and Methods, 8(2): 215-231. DOI: https://doi.org/10.1017/psrm.2018.44

Mocănașu D. 2020. Determining the sample size in qualitative research. Proceedings of the 4th International Multidisciplinary Scientific Conference on the Dialogue Between Sciences & Arts, Religion & Education, October 26–27. Târgoviște, Romania: Ideas Forum International Academic and Scientific Association, p. 181-187. DOI: https://doi.org/10.26520/mcdsare.2020.4.181-187

Mthuli S., Ruffin F., Singh N. 2022. ‘Define, Explain, Justify, Apply’ (DEJA): An analytic tool for guiding qualitative research sample size. International Journal of Social Research Methodology, 25(6): 809-821. DOI: https://doi.org/10.1080/13645579.2021.1941646

Nasheeda A. 2022. Sampling, sample size, and data saturation in qualitative research. VC Research Digest, 10 (April): 7-9.

Olea R. 1984. Sampling design optimization for spatial functions. Mathematical Geology, 16(4): 369-392. DOI: https://doi.org/10.1007/BF01029887

Overton W., Stehman S. 1993. Properties of designs for sampling continuous spatial resources from a triangular grid. Communications in Statistics: Theory and Methods, 22: 2641-2660. DOI: https://doi.org/10.1080/03610928308831175

Rutkauskas A., Raudeliuniene J., Racinskaja I. 2014. Integral knowledge, innovation and technology cluster formation nurturing the universal development sustainability in the context of globalization. Economics & Sociology, 7(4): 41. DOI: https://doi.org/10.14254/2071-789X.2014/7-4/3

Sebele-Mpofu F. 2021. The sampling conundrum in qualitative research: Can saturation help alleviate the controversy and alleged subjectivity in sampling? International J. of Social Science Studies, 9(5): 11-25. DOI: https://doi.org/10.11114/ijsss.v9i5.5294

Stehman S., Overton W. 1996. Spatial sampling. [In:] S. Arlinghaus, D. Griffith (eds.), Practical Handbook of Spatial Statistics. CRC Press Boca, Raton, FL, p. 31-63. DOI: https://doi.org/10.1201/9781003067689-3

Stough T., Cressie N., Kang E., Michalak A., Sahr K. 2020. Spatial analysis and visualization of global data on multi-resolution hexagonal grids. Japanese J. of Statistics and Data Science, 3: 107-128. DOI: https://doi.org/10.1007/s42081-020-00077-w

Straková J. 2015. Sustainable value added as we do not know it. Business: Theory and Practice Verslas: Teorija ir Praktika, 16(2): 168-173. DOI: https://doi.org/10.3846/btp.2015.453

Subedi K. 2021. Determining the sample in qualitative research. Scholars’ Journal, 4: 1-13. DOI: https://doi.org/10.3126/scholars.v4i1.42457

Webster R., Oliver M. 2007. Geostatistics for Environmental Scientists. 2nd ed. Wiley, Chichester, UK. DOI: https://doi.org/10.1002/9780470517277

White D., U.S. Environmental Protection Agency 1992. EPA 40 km Hexagons for Conterminous United States. U.S. Geological Survey, Washington, DC.