Zermelo: a Well Founded Antiskolemism

Main Article Content

Jerzy Pogonowski

Downloads

Download data is not yet available.

Article Details

Jak cytować
Pogonowski, J. (2007). Zermelo: a Well Founded Antiskolemism. Investigationes Linguisticae, 14, 172-174. https://doi.org/10.14746/il.2006.14.16
Dział
Recenzje

Referencje

  1. Barwise, J. 1975. Admissible Sets and Structures. An Approach to Definability Theory. Berlin Heidelberg New York: Springer Verlag.
  2. Barwise, J., Feferman, S. (Eds.) 1985. Model-Theoretic Logics. New York Berlin Heidelberg Tokyo: Springer Verlag.
  3. van Dalen, D., Ebbinghaus, H.D. 2000. Zermelo and the Skolem Paradox. The Bulletin o f Symbolic Logic Volume 6, Number 2, 145-161. Contains [Zermelo 1921] and [Zermelo 1937].
  4. Dawson, J.W. 1985. Completing the Godel-Zermelo Correspondence. Historia Mathematica 12, 66-70.
  5. Grattan-Guinness, I. 1979. In memoriam Kurt Godel: his 1931 correspondence with Zermelo on his incompletability theorem. Historia Mathematica 6, 294-304.
  6. Moore, G.H. 1980. Beyond First-order Logic: The Historical Interplay between Mathematical Logic and Axiomatic Set Theory. History and Philosophy o f Logic 1, 95-137. Contains [Zermelo 1931(?)] and fragments of [Zermelo 1929].
  7. Moore, G.H. 2002. Die Kontroverse zwischen Godel und Zermelo. In: B. Buldt u.a. (Hrsg.) Kurt Godel.
  8. Wahrheit und Beweisbarkeit. Band 1: Dokumente und historische Analysen, Band 2: Kompendium zum Werk. Wien: obv&hpt VerlagsgmbH & Co., 55-64.
  9. Peckhaus, V. 1990. ‘Ich habe mich wohl gehutet, alle Patronen auf einmal zu verschiefien’. Ernst Zermelo in Gottingen. History and Philosophy o f Logic 11, 19-58.
  10. Taylor, R.G. 2002. Zermelo’s Cantorian theory of systems of infinitely long propositions. The Bulletin of Symbolic Logic Volume 8, Number 4, 478-515.
  11. Uzquiano, G. 1999. Models of second-order Zermelo set theory. The Bulletin o f Symbolic Logic Volume 5, Number 3, 289-302.