How Do Metalogical Concepts Emerge?
PDF (Język Polski)

How to Cite

Pogonowski, J. (2007). How Do Metalogical Concepts Emerge?. Investigationes Linguisticae, 14, 162–163. https://doi.org/10.14746/il.2006.14.12

Number of views: 134


Number of downloads: 147

https://doi.org/10.14746/il.2006.14.12
PDF (Język Polski)

References

Awodey, S., Reck, E.H. 2002a. Completeness and Categoricity, Part I: Nineteenth-century Axiomatics to Twentiethcentury Metalogic. History and Philosophy of Logic 23, 1-30.

Awodey, S., Reck, E.H. 2002b. Completeness and Categoricity, Part II: Twentieth-Century Metalogic to Twenty-first-Century Semantics. History and Philosophy of Logic 23, 77-94.

Bernays, P. 1918. Beitrage zur axiomatischen Behandlung des Logik-Kalkuls. Habilitationsschrift, Universitat Gottingen, [unpublished].

Corcoran, J. 1980. Categoricity. History and Philosophy of Logic 1, 187-207.

Dawson, J.W., Jr. 1993. The Compactness of First-Order Logic: From Godel to Lindstrom. History and Philosophy of Logic 14, 15-38.

Godel, K. 1930. Die Vollstandigkeit der Axiome des logischen Funktionenkalkuls. Monatshefte fur Mathematik und Physik37, 349-360.

Godel, K. 1931. Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme. Monatshefte fur Mathematik und Physik 38, 173-198.

Hilbert, D., Ackermann, W. 1928. Grundzuge der theoretischen Logik. Verlag von Julius Springer, Berlin.

Post, E. 1920. Determination of all closed systems of truth tables. Bulletin o f American Mathematical SocietyXXVI, 437.

Post, E. 1921. Introduction to a general theory of elementary propositions. American Journal o f Mathematics XLIII. 163-185.

Read, S. 1997. Completeness and Categoricity: Frege, Godel and Model Theory. History and Philosophy of Logic 18. 79-94.

Surma, S. (Ed.) 1973. Studies in the History of Mathematical Logic. Ossolineum.

Tennant, N. 2000. Deductive versus Expressive Power: a Pre-Godelian Predicament. The Journal o f Philosophy vol. XCVII, No. 5, 257-277.