Ocena efektywności procesu dyplomowania na studiach pierwszego stopnia w polskich publicznych uczelniach technicznych

Main Article Content

Andrzej Szuwarzyński

Abstrakt

W artykule przedstawiono analizę i ilościową ocenę funkcjonowania 18 polskich uczelni technicznych uwzględniającą dwa podstawowe problemy: rezygnację ze studiów w trakcie pierwszego roku oraz wskaźniki ukończenia studiów w nominalnym czasie. Do oceny efektywności procesu dyplomowania wykorzystano prostą metodę wskaźnikową oraz nieparametryczną metodę Data Envelopment Analysis (DEA). Ocenę przeprowadzono dla studiów pierwszego stopnia prowadzonych w formie stacjonarnej i niestacjonarnej. Na podstawie prostych wskaźników dokonano wstępnej oceny zjawiska. W modelu DEA uwzględniono po stronie nakładów liczbę studentów rozpoczynających studia w 2011 roku, liczbę nauczycieli akademickich oraz całkowitą liczbę studentów pierwszego stopnia. Po stronie rezultatów uwzględniono liczbę absolwentów z roku 2015 oraz liczbę osób, które zrezygnowały po pierwszym roku studiów. Model ten pozwolił na stworzenie rankingu oraz obliczenie pożądanych wartości zmiennych uwzględnionych w analizie, dla uczelni nieefektywnych. W interpretacji wyników uwzględniono wcześniej zdefiniowane wskaźniki.

Downloads

Download data is not yet available.

Article Details

Jak cytować
Szuwarzyński, A. (2018). Ocena efektywności procesu dyplomowania na studiach pierwszego stopnia w polskich publicznych uczelniach technicznych. Nauka I Szkolnictwo Wyższe, (2(52), 85-111. https://doi.org/10.14746/nisw.2018.2.2
Dział
Artykuły
Biogram autora

Andrzej Szuwarzyński, Politechnika Gdańska

Pracownik Katedry Zarządzania na Wydziale Zarządzania i Ekonomii Politechniki Gdańskiej. Zainteresowania badawcze związane z funkcjonowaniem szkolnictwa wyższego oraz kształcenia przez całe życie. Autor wielu publikacji poruszających tematykę oceny efektywności instytucji szkolnictwa wyższego, z wykorzystaniem metody Data Envelopment Analysis.

Bibliografia

  1. Abbott, M. i Doucouliagos, C. (2003). The efficiency of Australian universities: A Data Envelopment Analysis. Economics of Education Review. 22(1): 89–97.
  2. Agasisti, T. i Johnes, G. (2009). Beyond frontiers: Comparing the efficiency of higher education decision-making units across more than one country. Education Economics. 17(1): 59–79.
  3. Agasisti, T. i Johnes, G. (2015). Efficiency, costs, rankings and heterogeneity: The case of US higher education. Studies in Higher Education. 40(1): 60–82.
  4. Agasisti, T. i Salerno, C. (2007). Assessing the cost efficiency of Italian universities. Education Economics. 15(4): 455–471.
  5. Andersson, C., Antelius, J., Månsson, J. i Sund, K. (2017). Technical efficiency and productivity for higher education institutions in Sweden. Scandinavian Journal of Educational Research. 61(2): 205–223.
  6. Archibald, R.B. i Feldman, D.H. (2008). Graduation rates and accountability: Regressions versus production frontiers. Research in Higher Education. 49(1): 80–100.
  7. Barra, C. i Zotti, R. (2016). A directional distance approach applied to higher education: An analysis of teaching-related output efficiency. Annals of Public and Cooperative Economics. 87(2): 145–173.
  8. Bonaccorsi, A. i Daraio, C. (2008). The differentiation of the strategic profile of higher education institutions. New positioning indicators based on microdata. Scientometrics. 74(1): 15-37.
  9. Bonaccorsi, A., Daraio, C. i Simar, L. (2006). Advanced indicators of productivity of universities: An application of robust nonparametric methods to Italian data. Scientometrics. 66(2): 389–410.
  10. Carneiro, P., Heckman, J.J. i Vytlacil, E. (2011). Estimating marginal returns to education. NBER Working Paper No. 16474. Cambridge: National Bureau of Economic Research.
  11. Carrington, R., Coelli, T. i Prasada Rao, D.S. (2005). The performance of Australian universities: conceptual issues and preliminary results. Economic Papers. 24(2): 145–163.
  12. Carrington, R., O’Donnell, C. i Prasada Rao, D.S. (2018). Australian university productivity growth and public funding revisited. Studies in Higher Education. 43(8): 1417–1438.
  13. Cook, W.D., Tone, K. i Zhu, J. (2014). Data envelopment analysis: Prior to choosing a model. Omega-International Journal of Management Science. 44: 1–4.
  14. Cooper, W.W., Seiford, L.M. i Tone, K. (2007). Data Envelopment Analysis: A comprehensive text with models, applications, references and DEA-Solver Software. New York: Springer.
  15. Cooper, W.W., Seiford, L.M. i Zhu J. (2011). Handbook on data envelopment analysis. New York: Springer.
  16. Daraio, C., Bonaccorsi, A. i Simar, L. (2015a). Efficiency and economies of scale and specialization in European universities: A directional distance approach. Journal of Informetrics. 9(3): 430–448.
  17. Daraio, C., Bonaccorsi, A. i Simar, L. (2015b). Rankings and university performance: A conditional multidimensional approach. European Journal of Operational Research. 244(3): 918–930.
  18. De Witte, K. i Hudrlikova, L. (2013). What about excellence in teaching? A benevolent ranking of universities. Scientometrics. 96(1): 337–364.
  19. EACEA-Eurydice (2015). The European Higher Education Area in 2015: Bologna Process Implementation Report. Luxembourg: Publications Office of the European Union.
  20. Johnes, G. i Tone, K. (2017). The efficiency of higher education institutions in England revisited: comparing alternative measures. Tertiary Education and Management. 23(3): 191–205.
  21. Johnes, J. (1996). Performance assessment in higher education in Britain. European Journal of Operational Research. 89(1): 18–33.
  22. Johnes, J. (2006). Data envelopment analysis and its application to the measurement of efficiency in higher education. Economics of Education Review. 25(3): 273–288.
  23. Kallio, K.M., Kallio, T.J. i Grossi, G. (2017). Performance measurement in universities: ambiguities in the use of quality versus quantity in performance indicators. Public Money & Management. 37(4): 293–300.
  24. Katharaki, M., i Katharakis, G. (2010). A comparative assessment of Greek universities’ efficiency using quantitative analysis. International Journal of Educational Research, 49(4–5): 115–128.
  25. Lee, T., Zhang, Y. i Jeong, B.H. (2016). A multi-period output DEA model with consistent time lag effects. Computers & Industrial Engineering. 93: 267–274.
  26. Luca, S., Verdyck, M. i Coppens, M. (2014). An approach to estimate degree completion using drop-out rates. Studies in Educational Evaluation. 40: 43–49.
  27. Lukman, R., Krajnc, D. i Glavic, P. (2010). University ranking using research, educational and environmental indicators. Journal of Cleaner Production. 18(7): 619–628.
  28. Murias, P., de Miguel, J.C. i Rodriguez, D. (2008). A Composite indicator for university quality assessment: The case of Spanish Higher Education System. Social Indicators Research. 89(1): 129–146.
  29. Olesen, O.B., Petersen, N.C. i Podinovski, V.V. (2015). Efficiency analysis with ratio measures. European Journal of Operational Research. 245(2): 446–462.
  30. OECD (2004). OECD Handbook for internationally comparative education statistics: Concepts, standards, definitions and classifications. Paris: OECD Publishing.
  31. OECD (2013). Education at a Glance 2013: OECD Indicators. Paris: OECD Publishing.
  32. Safón, V. (2013). What do global university rankings really measure? The search for the X factor and the X entity. Scientometrics. 97(2): 223–244.
  33. Sarrico, C., Teixeira, P., Rosa, M.J. i Cardoso, M.F. (2009). Subject mix and productivity in Portuguese universities. European Journal of Operational Research. 197(1): 287–295.
  34. Sneyers, E. i De Witte, K. (2017). The interaction between dropout, graduation rates and quality ratings in universities. Journal of the Operational Research Society. 68(4): 416–430.
  35. Thomas, L. i Hovdhaugen, E. (2014). Complexities and challenges of researching student completion and non-completion of HE programmes in Europe: A comparative analysis between England and Norway. European Journal of Education. 49(4): 457–470.
  36. Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research. 130(3): 498–509.
  37. Tran, Carolyn-Dung, T. T. i Villano, R.A. (2017). An empirical analysis of the performance of Vietnamese higher education institutions. Journal of Further and Higher Education. 41(4): 530–544.
  38. Trow, M. (1973). Problems in the transition from elite to mass higher education. Berkeley: Carnegie Commission on Higher Education.
  39. Vossensteyn, H., Stensaker, B., Kottmann, A., Hovdhaugen, E., Jongbloed, B., Wollscheid, S., Kaiser, F. i Cremonini, L. (2015). Dropout and Completion in Higher Education in Europe. Main Report. Luxembourg: Publications Office of the European Union.
  40. World Bank (2018). School enrollment, tertiary (% gross). http://databank.worldbank.org/data/reports.aspx?source=2&series=SE.TER.ENRR&country# [02.06.2018].
  41. Worthington, A.C. i Lee, B.L. (2008). Efficiency, technology and productivity change in Australian universities, 1998–2003. Economics of Education Review. 27(3): 285–298.
  42. Zrelli, N. i Hamida, B. (2013). Efficiency and quality in higher education. A dynamic analysis. Research in Applied Economics. 5(4): 116–130.