Abstrakt
Niewielkie półnaturalne siedliska, zwłaszcza zadrzewienia śródpolne, odgrywają w krajobrazie rolniczym bardzo ważną rolę. Jedną z nich jest zwiększenie oporu naturalnego środowiska na wystąpienie gradacji szkodnika. Funkcja ta wynika z faktu, że zadrzewienia są miejscem bytowania organizmów będących naturalnymi wrogami szkodników upraw, m.in. owadów drapieżnych oraz pasożytów i parazytoidów. W intensywnie zarządzanych krajobrazach rolniczych ochrona roślin uprawnych opiera się w dużej mierze na środkach chemicznych, co zwiększa koszty produkcji i zanieczyszczenie środowiska. Wzmocnienie naturalnej kontroli szkodników może przyczynić się do wzrostu bezpieczeństwa żywnościowego, przy jednoczesnym zmniejszeniu presji na bioróżnorodność i środowisko. Jednocześnie zadrzewienia śródpolne zwiększają efektywność innych usług, takich jak zapylanie czy regulacja klimatu. W ostatnim czasie dokonano znacznych postępów w mapowaniu usług ekosystemowych, ale naturalne zwalczanie szkodników jest jednym z najrzadziej podejmowanych tematów. Niniejsze opracowanie ma na celu
przedstawienie przestrzennej zmienności potencjału i zapotrzebowania na tę usługę, wskazując te części Polski, w których potrzeby ochrony zadrzewień są największe. Zastosowano podejście krajobrazowe, biorąc pod uwagę nie tylko udział zadrzewień, ale także wielkość płatów, ich kształt oraz wielkość strefy ekotonowej. Wyniki oraz wypracowana tu metodyka mogą służyć do formułowania polityk i strategii mających na celu zwiększenie bioróżnorodności i usług ekosystemowych. Badania te mogą być też podstawą działań wspierających zrównoważone rolnictwo, np. poprzez odpowiednią alokację funduszy z Programu Rozwoju Obszarów Wiejskich.
Finansowanie
Badania zostały przeprowadzone w ramach projektu „Usługi świadczone przez główne typy ekosystemów w Polsce – Podejście stosowane”. Projekt korzysta z dofinansowania otrzymanego od Islandii, Liechtensteinu i Norwegii w ramach funduszy EOG o warto- ści 6 454 526 zł oraz dofinansowania budżetu państwa o wartości 1 139 034 zł. Celami Projektu są przeniesienie wiedzy naukowej na temat usług ekosystemowych istniejącej w Europie do procesu rozpoznania i oceny usług ekosystemowych w Polsce, zwiększenie potencjału naukowego oraz zdolności administracji i zainteresowanych grup społecznych do wdrażania tego podejścia w zarządzaniu środowiskiem.
Bibliografia
Chaplin-Kramer R., O'Rourke M.E., Blitzer E.J., Kremen C. 2011. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett., 14(9): 922-932. https://doi.org/10.1111/j.1461-0248.2011.01642.x DOI: https://doi.org/10.1111/j.1461-0248.2011.01642.x
Chodkiewicz T., Neubauer G., Sikora A., Ławicki Ł., Meissner W., Bobrek R., Cenian Z., Bzoma S., Betleja J., Kuczyński L., Moczarska J., Rohde Z., Rubacha S., Wieloch M., Wylegała P., Zielińska M., Zieliński P., Chylarecki P. 2018. Monitoring Ptaków Polski w latach 2016-2018. Biuletyn Monitoringu Przyrody, 17: 1-90.
Copernicus Land Monitoring Service 2019. High Resolution Layer Small Woody Features - 2015 reference year Product Specifications & User Guidelines.
Englund O., Berndes G., Cederberg C. 2017. How to analyse ecosystem services in landscapes - a systematic review. Ecol. Ind., 73: 492-550. https://doi.org/10.1016/j.ecolind.2016.10.009 DOI: https://doi.org/10.1016/j.ecolind.2016.10.009
Forman R.T.T., Godron M. 1986. Landscape ecology. John Wiley & Sons, New York.
Haines-Young R., Potschin M.B. 2018. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. https://doi.org/10.3897/oneeco.3.e27108 DOI: https://doi.org/10.3897/oneeco.3.e27108
Hallmann C.A., Sorg M., Jongejans E., Siepel H., Hofland N., Schwan H., Stenmans W., Müller A., Sumser H., Hörren T., Goulson D., de Kroon H. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One, 18: 12(10):e0185809. https://doi.org/10.1371/journal.pone.0185809 DOI: https://doi.org/10.1371/journal.pone.0185809
Holland J.M., Bianchi F.J., Entling M.H., Moonen A.C., Smith B.M., Jeanneret P. 2016. Structure, function and management of semi-natural habitats for conservation biological control: a review of European studies. Pest Manag. Sci., 72: 1638-1651. https://doi.org/10.1002/ps.4318 DOI: https://doi.org/10.1002/ps.4318
Holland J.M., Douma J.C., Crowley L., James L., Kor L., Stevenson D., Smith B.M. 2017. Semi-natural habitats support biological control, pollination and soil conservation in Europe: a review. Agron. Sustainable Dev., 37: 31. https://doi.org/10.1007/s13593-017-0434-x DOI: https://doi.org/10.1007/s13593-017-0434-x
Janku K., Mana M., Szczepański M. 2021. Changes in the length of the shelterbelts adjacent to the agricultural areas and roads at the beginning of the 21st century in Kalisz city. Forestry Letters, 114: 915.
Jurgoński M., Łowicki D. 2020. Rolnictwo zrównoważone w Polsce oraz jego wdrażanie i postrzeganie w gminie Kcynia. [W:] A. Kołodziejczak, L. Kaczmarek (red.), Gospodarowanie gruntami na obszarach wiejskich. Bogucki Wydawnictwo Naukowe, Poznań, s. 129-147.
Kania J. 2006. Programy rolno-środowiskowe i zasady dobrej praktyki rolniczej jako możliwości optymalnego gospodarowania i ochrony dolin rzecznych. Infrastruktura i Ekologia Terenów Wiejskich, 4(1): 77-99.
Kołodziejczak A. 2018. The 2007-2013 Agri-environmental program as an instrument for the retardation of natural resources in Poland. Journal of Agribusiness and Rural Development, 2(48): 143-151. https://doi.org/10.17306/J.JARD.2018.00413 DOI: https://doi.org/10.17306/J.JARD.2018.00413
Kowalski S. 2017. Realizacja Wspólnej Polityki Rolnej Unii Europejskiej i jej konsekwencje dla europejskiego rolnictwa. Nauki Ekonomiczne, 25: 91-112.
Kujawa K., Janku K., Mana M., Choryński A. 2021. The loss of farmland trees and shrubs in western Poland in the 21st century assessed with the use of Google Maps Baltic Forestry, 27(1): 459. https://doi.org/10.46490/BF459 DOI: https://doi.org/10.46490/BF459
Lynch J., Cain M., Frame D., Pierrehumbert R. 2021. Agriculture's Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst., 4: 518039. https://doi.org/10.3389/fsufs.2020.518039 DOI: https://doi.org/10.3389/fsufs.2020.518039
Łowicki D. 2012. Prediction of flowing water pollution on the basis of landscape metrics as a tool supporting delimitation of Nitrate Vulnerable Zones. Ecological Indicators, 23: 27-33. https://doi.org/10.1016/j.ecolind.2012.03.004 DOI: https://doi.org/10.1016/j.ecolind.2012.03.004
Łowicki D., Fagiewicz K. 2021. A new model of pollination services potential using a landscape approach: a case study of post-mining area in Poland. Ecosystem Services, 52: 1-10. https://doi.org/10.1016/j.ecoser.2021.101370 DOI: https://doi.org/10.1016/j.ecoser.2021.101370
McGarigal K., Cushman S., Stafford S. 2000. Multivariate statistics for wildlife ecology research. Springer, New York. https://doi.org/10.1007/978-1-4612-1288-1 DOI: https://doi.org/10.1007/978-1-4612-1288-1
Millennium Ecosystem Assessment 2005. Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, D.C., USA.
Moonen A.C., Bocci G., Bartual A.M., Albrecht M., Sutter L. 2016. Beneficials database management and scoring system development. EU FP7 QUESSA project Deliverable 2.4.
NIK 2018. Wystąpienie pokontrolne: KSI.410.002.08.2018, P/18/046. Najwyższa Izba Kontroli, Departament Środowiska, Warszawa.
Rega C., Bartual A.M., Bocci G., Sutter L., Albrecht M., Moonen A.C., Jeanneret P., van der Werf W., Pfister S.C., Holland J.M., Paracchini M.L. 2018. A pan-European model of landscape potential to support natural pest control services. Ecol. Indic., 90: 653-664. https://doi.org/10.1016/j.ecolind.2018.03.075 DOI: https://doi.org/10.1016/j.ecolind.2018.03.075
Rusch A., Chaplin-Kramer R., Gardiner M.M., Hawro V., Holland J., Landis D., Bommarco R. 2016. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ., 221: 198-204. https://doi.org/10.1016/j.agee.2016.01.039 DOI: https://doi.org/10.1016/j.agee.2016.01.039
Ryszkowski L., Bartoszewicz A. 1996. Influence of shelterbelts and meadows on the chemistry of ground water. [W:] L. Ryszkowski i in. (red.), Dynamics of an agricultural landscape. PWRiL, Poznan, s. 98-109.
Springmann M., Clark M., Mason-D'Croz D., Wiebe K., Bodirsky B.L., Lassaletta L. i in. 2018. Options for keeping the food system within environmental limits. Nature, 562: 519-525. https://doi.org/10.1038/s41586-018-0594-0 DOI: https://doi.org/10.1038/s41586-018-0594-0
Stępniewska M., Zwierzchowska I., Mizgajski A. 2018. Capability of the Polish legal system to introduce the ecosystem services approach into environmental management. Ecosystem Services, 29 (Pt B): 271-281. https://doi.org/10.1016/j.ecoser.2017.02.025 DOI: https://doi.org/10.1016/j.ecoser.2017.02.025
TEEB 2010. The Economics of Ecosystems and Biodiversity: Ecological and economic foundation. Earthscan, Cambridge.
Tomczak F. 2009. Ewolucja wspólnej polityki rolnej UE i strategia rozwoju rolnictwa polskiego. [W:] Ekonomiczne i społeczne uwarunkowania rozwoju polskiej gospodarki żywnościowej po wstąpieniu Polski do Unii Europejskiej. Program Wieloletni 2005-2009, nr 125/2009, Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej Państwowy Instytut Badawczy, Warszawa.
Tschumi M., Albrecht M., Entling M.H., Jacot K. 2015. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc. R. Soc. B: Biol. Sci., 282: 1814. https://doi.org/10.1098/rspb.2015.1369 DOI: https://doi.org/10.1098/rspb.2015.1369
With K.A. 2019. Essentials of Landscape Ecology. Oxford University Press. https://doi.org/10.1093/oso/9780198838388.001.0001 DOI: https://doi.org/10.1093/oso/9780198838388.001.0001
Licencja
Prawa autorskie (c) 2022 Damian Łowicki
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.