Klasykacja operatorów metatekstowych i częstość ich występowania w krótkich tekstach naukowych w języku polskim

Main Article Content

Agnieszka Czoska

Abstrakt

The article presents an analysis of the usage frequency of different types of metatext markers in short scientific texts written in Polish. A well-known classification by Hyland (1998, 2005) was used with additional binary classifications by Bunton (1999) and Dahl (2004). Data mining was performed on the data using rule-generating algorithm OneRule, decision tree J48, bayesian Naive Bayes Classifier and k-Neares Neighbour classifier, in order to analyse relations between the classes of metatext markers found in the texts. The outcomes of the analysis may be used to simplify classification of metatext markers. Information on metatext markers classes frequency may also be used for preparing or adapting texts in research on the influence of metatext markers on reading and, eventually, for automatic text structure analysis and abstract generation.
 

Downloads

Download data is not yet available.

Article Details

Jak cytować
Czoska, A. (2011). Klasykacja operatorów metatekstowych i częstość ich występowania w krótkich tekstach naukowych w języku polskim. Investigationes Linguisticae, 23, 1-33. https://doi.org/10.14746/il.2011.23.1
Dział
Artykuły

Bibliografia

  1. Abdi, R., Rizi, M. T. i Tavakoli, M. (2010). The cooperative principle in discourse communities and genres: A framework for the use of metadiscourse. Journal of Pragmatics , 42 .
  2. Aijmer, K. i Simon-Vandenbergen, A.-M. (2004). A model and a methodology for the study of pragmatic markers: the semantic eld of expectation. Journal of Pragmatics , 36 (10), 1781-1805.
  3. Bunton, D. (1999). The use of higher level metatext in ph.d theses. English for Specic Purposes , 18 (1), 41-56.
  4. Dahl, T. (2004). Textual metadiscourse in research articles: a marker of national culture or of academic discipline? Journal of Pragmatics , 36 (10), 1807-1825.
  5. Degand, L. i Sanders, T. (2002). The impact of relational markers on expository text comprehension in l1 and l2. Reading and Writing , 15 (7).
  6. Fraser, B. (1999). What are discourse markers? Journal of Pragmatics , 31 (7), 931-952.
  7. Goldman, S. R. i John A. Rakestraw, J. (2000). Structural aspects of constructing meaning from text. In M. L. Kamil, P. B. Mosenthal, P. D. Pearson i R. Barr (Eds.), Handbook of reading research. vol. 3 (p. 311-336). Lawrence Erlbaum Associates.
  8. Goldman, S. R. i Murray, J. D. (1992). Knowledge of connectors as cohesion devices in text: A comparative study of native-english and english-asa-second-language speakers. Journal of Educational Psychology , 84 (4), 504-519.
  9. Graesser, A. C., Jeon, M., Yan, Y. i Cai, Z. (2007). Discourse cohesion in text and tutorial dialogue. Information Design Journa, 15 (3), 199-213.
  10. Hyland, K. (1998). Persuasion and context: The pragmatics of academic metadiscourse. Journal of Pragmatics , 30 (4), 437-455.
  11. Hyland, K. (2005). Metadiscourse: exploring interaction in writing. wyd. Continuum.
  12. Hyland, K. i Tse, P. (2004). Metadiscourse in academic writing: A reappraisal. Applied Linguistic, 25 (2), 156-177.
  13. Knott, A. i Dale, R. (1993). Using linguistic phenomena to motivate a set of rhetorical relations (Tech. Rep.). Discourse Processes.
  14. Knott, A. i Dale, R. (1996). Choosing a set of coherence realtions for text generation: a data-driven approach. Lecture Notes in Computer Science , 1036 (1036), 47-67.
  15. Lemarié, J., Robert F. Lorch, J., Eyrolle, H. i Virbel, J. (2008). Sara: A textbased and reader-based theory of signaling. Educational Psychologist , 43 (1), 27-48.
  16. Louwerse, M. (2001). An analytic and cognitive parameterization of coherence relations. Cognitive Linguistic, 12 (3), 291-315.
  17. Louwerse, M. M. i Mitchell, H. H. (2003). Toward a taxonomy of a set of discourse markers in dialog: A theoretical and computational linguistic account. Discourse Processes , 35 (3), 199-239.
  18. Marcu, D. (1997). The rhetorical parsing of natural language texts. Association for Computational Linguistics.
  19. McNamara, D. S. (2001). Reading both high-coherence and low-coherence texts: Eects of text sequence and prior knowledge. Canadian Journal of Experimental Psychology , 55 (1), 51-62.
  20. McNamara, D. S., Kintsch, E., Butler Songer, N. i Kintsch, W. (1996). Are good texts always better? interactions of text coherence, background knowledge, and levels of understanding in learning from text. Cognition and Instruction, 14 (1), 1-43.
  21. Mur-Dueñas, P. (2009). Logical markers in l1 (spanish and english) and l2 (english) business research articles. English Text Construction , 2 (2), 246-264.
  22. Mur-Dueñas, P. (2011). An intercultural analysis of metadiscourse features in research articles written in english and in spanish. Journal of Pragmatics, 43 (12), 3068-3079.
  23. Rish, I. (2001). An empirical study of the naive bayes classier. In Ijcai 2001 workshop on empirical methods in articial intelligence.
  24. Rish, I., Hellerstein, J. i Thathachar, J. (2001). An analysis of data characteristics that aect naive bayes performance (Tech. Rep.). Technical
  25. Report RC21993, IBM T.J. Watson Research Center.
  26. Sanders, T., Land, J. i Mulder, G. (2007a). Linguistic markers of coherence improve text comprehension in functional contexts. Information Design Journal , 15 (3), 219-235.
  27. Sanders, T., Land, J. i Mulder, G. (2007b). Linguistic markers of coherence improve text comprehension in functional contexts. Information Design Journal , 15 (3), 219-235.
  28. Sanders, T. J. M. i Noordman, L. G. M. (2000). The role of coherence relations and their linguistic markers in text processing. Discourse Processes, 29 (1), 37-60.
  29. Saz Rubio, M. M. del. (2011). A pragmatic approach to the macro-structure and metadiscoursal features of research article introductions in the eld of agricultural sciences. English for Specic Purposes , 30 (4), 258-271.
  30. Winiarska, J. (2001). Operatory metatekstowe w dialogu telewizyjnym. Wyd. Universitas.
  31. Witten, I. H. i Frank, E. (2005). Data mining: Practical machine learning tools and techniques, second edition. wyd. Morgan Kaufmann.
  32. Zwaan, R. A. i Radvansky, G. A. (1998). Situation models in language comprehension and memory. Psychological Bulletin , 123 (2), 162-185.