Causality and ability beliefs: An introduction to confounders and colliders
Journal cover Studies in Second Language Learning and Teaching, volume 15, no. 2, year 2025, title Special issue: If I think I can, I will:  Ability beliefs and learning  a new language at school
PDF

Keywords

DAG
d-separation
substantiation
overcontrol bias
endogenous selection bias

How to Cite

Al-Hoorie, A. H., & Hiver, P. (2025). Causality and ability beliefs: An introduction to confounders and colliders. Studies in Second Language Learning and Teaching, 15(2), 227–249. https://doi.org/10.14746/ssllt.48231

Number of views: 319


Number of downloads: 303

Abstract

Causal inference is a fundamental goal of many research endeavors, including scholarship in the field of language education and learning. Randomized controlled trials are considered an ideal design to test causal claims, but not all claims can be subjected to experimental treatment due to ethical and practical constraints. In this article, we provide an overview of the conditions under which causal inference may be made from observational data. This includes recognition of the role of confounders and colliders; the former are common causes of the independent and dependent variables and must be controlled, while the latter are common effects and must not be controlled. We illustrate these ideas with two examples involving ability beliefs and demonstrate them through directed acyclic graphs. We discuss the implications of this approach to causal inference from observational data, specifically in individual differences in language learning research, highlighting the need for explicit modeling of causal relationships and the risk of the atheoretical inclusion of variables, whether as controls, predictors, or covariates.

https://doi.org/10.14746/ssllt.48231
PDF

References

Acharya, A., Blackwell, M., & Sen, M. (2016). Explaining causal findings without bias: Detecting and assessing direct effects. American Political Science Review, 110(3), 512-529. DOI: https://doi.org/10.1017/S0003055416000216

Achen, C. H. (2005). Let’s put garbage-can regressions and garbage-can probits where they belong. Conflict Management and Peace Science, 22(4), 327-339. DOI: https://doi.org/10.1080/07388940500339167

Al-Hoorie, A. H. (2017). Implicit attitudes in language learning [Doctoral dissertation, University of Nottingham].

Al-Hoorie, A. H. (2018). The L2 motivational self system: A meta-analysis. Studies in Second Language Learning and Teaching, 8(4), 721-754. DOI: https://doi.org/10.14746/ssllt.2018.8.4.2

Al-Hoorie, A. H., Hiver, P., & In’nami, Y. (2024). The validation crisis in the L2 motivational self system tradition. Studies in Second Language Acquisition, 46(2), 307-329. DOI: https://doi.org/10.1017/S0272263123000487

Al-Hoorie, A. H., Hiver, P., Kim, T.-Y., & De Costa, P. I. (2021). The identity crisis in language motivation research. Journal of Language and Social Psychology, 40(1), 136-153. DOI: https://doi.org/10.1177/0261927X20964507

Al-Hoorie, A. H., Hiver, P., Larsen-Freeman, D., & Lowie, W. (2023). From replication to substantiation: A complexity theory perspective. Language Teaching, 56(2), 276-291. DOI: https://doi.org/10.1017/S0261444821000409

Al-Hoorie, A. H., Oga-Baldwin, W. L. Q., Hiver, P., & Vitta, J. P. (2022). Self-determination mini-theories in second language learning: A systematic review of three decades of research. Language Teaching Re-search, 29(4), 1603-1638. DOI: https://doi.org/10.1177/13621688221102686

Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91(434), 444-455. DOI: https://doi.org/10.1080/01621459.1996.10476902

Bareinboim, E., & Pearl, J. (2016). Causal inference and the data-fusion problem. Proceedings of the National Academy of Sciences, 113(27), 7345-7352. DOI: https://doi.org/10.1073/pnas.1510507113

Cinelli, C., Forney, A., & Pearl, J. (2022). A crash course in good and bad controls. Sociological Methods & Research. DOI: https://doi.org/10.1177/00491241221099552

Diener, E., Northcott, R., Zyphur, M. J., & West, S. G. (2022). Beyond experiments. Perspectives on Psychological Science, 17(4), 1101-1119. DOI: https://doi.org/10.1177/17456916211037670

Ding, P., & Miratrix, L. W. (2015). To adjust or not to adjust? Sensitivity analysis of M-Bias and Butterfly-Bias. Journal of Causal Inference, 3(1), 41-57. DOI: https://doi.org/10.1515/jci-2013-0021

Dörnyei, Z. (2005). The psychology of the language learner: Individual dif-ferences in second language acquisition. Lawrence Erlbaum.

Dörnyei, Z. (2009). The L2 motivational self system. In Z. Dörnyei & E. Ush-ioda (Eds.), Motivation, language identity and the L2 self (pp. 9-42). Multilingual Matters. DOI: https://doi.org/10.21832/9781847691293-003

Dörnyei, Z., & Ryan, S. (2015). The psychology of the language learner revisited. Routledge. DOI: https://doi.org/10.4324/9781315779553

Elwert, F., & Winship, C. (2014). Endogenous selection bias: The problem of conditioning on a collider variable. Annual Review of Sociology, 40(1), 31-53. DOI: https://doi.org/10.1146/annurev-soc-071913-043455

Fiedler, K. (2011). Voodoo correlations are everywhere – not only in neuro-science. Perspectives on Psychological Science, 6(2), 163-171. DOI: https://doi.org/10.1177/1745691611400237

Gardner, R. C. (2000). Correlation, causation, motivation, and second language acquisition. Canadian Psychology/Psychologie canadienne, 41(1), 10-24. DOI: https://doi.org/10.1037/h0086854

Glynn, A. N., & Kashin, K. (2018). Front-door versus back-door adjustment with unmeasured confounding: Bias formulas for front-door and hybrid adjustments with application to a job training program. Journal of the American Statistical Association, 113(523), 1040-1049. DOI: https://doi.org/10.1080/01621459.2017.1398657

Grosz, M. P., Rohrer, J. M., & Thoemmes, F. (2020). The taboo against explicit causal inference in nonexperimental psychology. Perspectives on Psychological Science, 15(5), 1243-1255. DOI: https://doi.org/10.1177/1745691620921521

Hayduk, L., Cummings, G., Stratkotter, R., Nimmo, M., Grygoryev, K., Dosman, D., Gillespie, M., Pazderka-Robinson, H., & Boadu, K. (2003). Pearl’s d-separation: One more step Into causal thinking. Structural Equation Modeling: A Multidisciplinary Journal, 10(2), 289-311. DOI: https://doi.org/10.1207/S15328007SEM1002_8

Hernán, M. A. (2018). The C-word: Scientific euphemisms do not improve causal inference from observational data. American Journal of Public Health, 108(5), 616-619. DOI: https://doi.org/10.2105/AJPH.2018.304337

Hernán, M. A., Hsu, J., & Healy, B. (2019). A second chance to get causal inference right: A classification of data science tasks. CHANCE, 32(1), 42-49. DOI: https://doi.org/10.1080/09332480.2019.1579578

Hiver, P., & Al-Hoorie, A. H. (2020a). Reexamining the role of vision in second language motivation: A preregistered conceptual replication of You, Dörnyei, and Csizér (2016). Language Learning, 70(1), 48-102. DOI: https://doi.org/10.1111/lang.12371

Hiver, P., & Al-Hoorie, A. H. (2020b). Research methods for complexity theory in applied linguistics. Multilingual Matters. DOI: https://doi.org/10.21832/9781788925754

Hiver, P., Al-Hoorie, A. H., Vitta, J. P., & Wu, J. (2021). Engagement in language learning: A systematic review of 20 years of research methods and definitions. Language Teaching Research, 28(1), 201-230. DOI: https://doi.org/10.1177/13621688211001289

Killingsworth, M. A. (2021). Experienced well-being rises with income, even above $75,000 per year. Proceedings of the National Academy of Sciences, 118(4), e2016976118. DOI: https://doi.org/10.1073/pnas.2016976118

Lamb, M. (2017). The motivational dimension of language teaching. Language Teaching, 50(3), 301-346. DOI: https://doi.org/10.1017/S0261444817000088

MacKinnon, D. P., & Pirlott, A. G. (2015). Statistical approaches for enhancing causal interpretation of the M to Y relation in mediation analysis. Personality and Social Psychology Review, 19(1), 30-43. DOI: https://doi.org/10.1177/1088868314542878

McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan (2nd ed.). CRC Press. DOI: https://doi.org/10.1201/9780429029608

Meyer, J., Lüdtke, O., Schmidt, F. T. C., Fleckenstein, J., Trautwein, U., & Köl-ler, O. (2022). Conscientiousness and cognitive ability as predictors of academic achievement: Evidence of synergistic effects from integrative data analysis. European Journal of Personality. DOI: https://doi.org/10.1177/08902070221127065

Montgomery, J. M., Nyhan, B., & Torres, M. (2018). How conditioning on posttreatment variables can ruin your experiment and what to do about it. American Journal of Political Science, 62(3), 760-775. DOI: https://doi.org/10.1111/ajps.12357

Orben, A., & Lakens, D. (2020). Crud (re)defined. Advances in Methods and Practices in Psychological Science, 3(2), 238-247. DOI: https://doi.org/10.1177/2515245920917961

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669-688. DOI: https://doi.org/10.1093/biomet/82.4.669

Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511803161

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. Wiley.

Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal models for observational data. Advances in Methods and Practices in Psychological Science, 1(1), 27-42. DOI: https://doi.org/10.1177/2515245917745629

Spector, P. E., & Brannick, M. T. (2011). Methodological urban legends: The misuse of statistical control variables. Organizational Research Methods, 14(2), 287-305. DOI: https://doi.org/10.1177/1094428110369842

Stroebe, W. (2020). Student evaluations of teaching encourages poor teaching and contributes to grade inflation: A theoretical and empirical analysis. Basic and Applied Social Psychology, 42(4), 276-294. DOI: https://doi.org/10.1080/01973533.2020.1756817

Tennant, P. W. G., Murray, E. J., Arnold, K. F., Berrie, L., Fox, M. P., Gadd, S. C., Harrison, W. J., Keeble, C., Ranker, L. R., Textor, J., Tomova, G. D., Gilthorpe, M. S., & Ellison, G. T. H. (2020). Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: Review and recommendations. International Journal of Epidemiology, 50(2), 620-632. DOI: https://doi.org/10.1093/ije/dyaa213

Textor, J., van der Zander, B., Gilthorpe, M. S., Liśkiewicz, M., & Ellison, G. T. H. (2016). Robust causal inference using directed acyclic graphs: The R package “dagitty.” International Journal of Epidemiology, 45(6), 1887-1894. DOI: https://doi.org/10.1093/ije/dyw341

Tosh, C., Greengard, P., Goodrich, B., Gelman, A., Vehtari, A., & Hsu, D. (2021). The piranha problem: Large effects swimming in a small pond. arXiv.

Westreich, D., & Greenland, S. (2013). The table 2 fallacy: Presenting and interpreting confounder and modifier coefficients. American Journal of Epidemiology, 177(4), 292-298. DOI: https://doi.org/10.1093/aje/kws412

Wysocki, A. C., Lawson, K. M., & Rhemtulla, M. (2022). Statistical control requires causal justification. Advances in Methods and Practices in Psychological Science, 5(2), 1-19. DOI: https://doi.org/10.1177/25152459221095823

You, C., Dörnyei, Z., & Csizér, K. (2016). Motivation, vision, and gender: A survey of learners of English in China. Language Learning, 66(1), 94-123. DOI: https://doi.org/10.1111/lang.12140

Young, S. S., & Karr, A. (2011). Deming, data and observational studies. Significance, 8(3), 116-120. DOI: https://doi.org/10.1111/j.1740-9713.2011.00506.x

Zhou, S., Hiver, P., & Al-Hoorie, A. H. (2021). Measuring L2 engagement: A review of issues and applications. In P. Hiver, A. H. Al-Hoorie, & S. Mercer (Eds.), Student engagement in the language classroom (pp. 75-98). Multilingual Matters. DOI: https://doi.org/10.2307/jj.22730722.10