Abstract
The main aim of the study is to investigate the relationship between foreign language learners’ Big Five personality traits and their attitudes towards Artificial Intelligence (AI), as well as to examine the connection between those attitudes and learners’ use of AI-generated solutions in their foreign language education. 429 foreign language university students were asked to complete an online questionnaire. Subsequently, statistical analysis of the data was carried out to obtain results, which indicated that conscientiousness and extraversion correlated positively with positive attitudes towards AI, while agreeableness, neuroticism and intellect/imagination correlated negatively with those attitudes. Furthermore, it was found that extraversion, conscientiousness and neuroticism were positively correlated with the frequency of AI usage in foreign language learning, while intellect/imagination was negatively correlated with both the frequency of AI usage and the perceived usefulness of AI tools in foreign language learning. Finally, the study revealed an association between the frequency of AI use and the perceived usefulness of AI-generated tools, as well as a strong direct effect of the frequency of AI usage in foreign language learning on attitudes towards AI. Overall, the use of AI-generated tools appears to be more dependent on the learner’s attitudes towards AI than their personality traits.
Literaturhinweise
Alharbi W. (2023), AI in the foreign language classroom: A pedagogical overview of automated writing assistance tools. “Education Research International”, No 2023(1), pp. 1–15. Online: https://onlinelibrary.wiley.com/doi/epdf/ [Accessed 23.11.2024]. DOI: https://doi.org/10.1155/2023/4253331
Allport G. (1937), Personality: A psychological interpretation. New York: Holt.
Alsadoon R. (2021), Chatting with AI bot: Vocabulary learning assistant for Saudi EFL learners. „English Language Teaching”, No 14(6), pp. 135–157. DOI: https://doi.org/10.5539/elt.v14n6p135
Anyanwu E. et al. (2024), Artificial intelligence in healthcare: A review of ethical dilemmas and practical applications. “International Medical Science Research Journal”, No 4(2), pp. 126–140. DOI: https://doi.org/10.51594/imsrj.v4i2.755
Block J. (1977), The Eysencks and psychoticism. “Journal of Abnormal Psychology”, No 86, pp. 653–654. DOI: https://doi.org/10.1037//0021-843X.86.6.653
Bollen K.A. (1989), Structural equations with latent variables. New York: Wiley. DOI: https://doi.org/10.1002/9781118619179
Cao L. et al. (2023), The dark side of AI identity: Investigating when and why AI identity entitles unethical behavior. “Computers in Human Behavior”, No 143, 107669. DOI: https://doi.org/10.1016/j.chb.2023.107669
Cattell R. (1965), The scientific analysis of personality. Baltimore, MD: Penguin Books.
Cieciuch J., Łaguna M. (2014), Wielka Piątka i nie tylko: Cechy osobowości i ich pomiar. „Annals of Psychology”, No 17(2), pp. 239–247.
Costa P.T. Jr., McCrae R.R. (1992), NEO-PI-R professional manual. Odessa, FL: Psychological Assessment Resources.
Creely E. (2023), The possibilities, limitations, and dangers of generative AI in language learning and literacy practices. Conference: International Graduate Research Symposium. University of Languages and International Studies (ULIS). Hanoi: Vietnam.
Donnellan M.B. et al. (2006), The Mini-IPIP scales: Tiny-yet-effective measures of the Big Five factors of personality. “Psychological Assessment”, No 18(2), pp. 192–203. DOI: https://doi.org/10.1037/1040-3590.18.2.192
Elson J., Derrick D., Ligon G. (2018), Examining trust and reliance in collaborations between humans and automated agents (in:) Proceedings of the 51st Hawaii International Conference on System Sciences, pp. 430–439. Online: https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/d1c49cde-05da-4517-bd1f-fd7250966d29/content [Accessed 23.11.2024].
Fiske D. (1949), Consistency of the factorial structures of personality ratings from different sources. “Journal of Abnormal and Social Psychology”, No 44, pp. 329–344. DOI: https://doi.org/10.1037/h0057198
Glikson E., Woolley A. (2020), Human trust in artificial intelligence: Review of empirical research. “Academy of Management Annals”, No 14(2). DOI: https://doi.org/10.5465/annals.2018.0057
Goldberg L.R. (1990), An alternative “description of personality”: The big-five factor structure. “Journal of Personality and Social Psychology”, No 59, pp. 1216–1229. DOI: https://doi.org/10.1037//0022-3514.59.6.1216
Goldberg L.R. (1999), A broad-bandwidth, public-domain, personality inventory measuring the lower-level facets of several five-factor models, (in:) Mervielde I. et al. (eds.), Personality psychology in Europe. Tilburg, The Netherlands: Tilburg University Press, pp. 7–28.
Gosling S.D., Rentfrow P.J., Swann W.B. (2003), A very brief measure of the Big-Five personality domains. “Journal of Research in Personality”, No 37, pp. 504–528. DOI: https://doi.org/10.1016/S0092-6566(03)00046-1
Gratch J., Fast N. (2022), The power to harm: AI assistants pave the way to unethical behavior. “Current Opinion in Psychology”, No 47(101382). DOI: https://doi.org/10.1016/j.copsyc.2022.101382
Gruzdeva M.L. et al. (2024), The use of artificial intelligence in teaching foreign languages, (in:) Sergi B.S. et al. (eds.), Ecological footprint of the modern economy and the ways to reduce it. Switzerland: Springer, pp. 261–278. DOI: https://doi.org/10.1007/978-3-031-49711-7_44
Guilherme A. (2019), AI and education: The importance of teacher and student relations. “AI & Society: Knowledge, Culture and Communication”, No 34, pp. 47–54. DOI: https://doi.org/10.1007/s00146-017-0693-8
Hofstee W., De Raad B., Goldberg L. (1992), Integration of the Big Five and circumplex approaches to trait structure. “Journal of Personality and Social Psychology”, No 63., pp. 146–163. DOI: https://doi.org/10.1037//0022-3514.63.1.146
Holmes W., Tuomi I. (2022), State of the art and practice in AI in education. “European Journal of Education”, No 57(4), pp. 531–691. DOI: https://doi.org/10.1111/ejed.12533
Huiling M. et al. (2023), Artificial intelligence technologies and applications for language learning and teaching. “Journal of Computer-Assisted Language Learning”, 36(3), pp. 1–19.
Huiling M. et al. (2024), A bibliometric analysis of artificial intelligence in language teaching and learning (1990–2023): Evolution, trends and future directions. “Education and Information Technologies”, No 29, pp. 25211–25235. DOI: https://doi.org/10.1007/s10639-024-12848-z
Hyesun C., Prabu D., Arun R. (2022), Trust in AI and its role in the acceptance of AI technologies. “International Journal of Human-Computer Interaction”, No 39(3), pp. 1–13.
Ibrahim, F., Münscher, J., Daseking, M., Telle, N. (2025), The technology acceptance model and adopter type analysis in the context of artificial intelligence. “Frontiers in Artificial Intelligence”, No 7, 1496518. DOI: https://doi.org/10.3389/frai.2024.1496518
Jiang R. (2022), How does artificial intelligence empower EFL teaching and learning nowadays? A review on artificial intelligence in the EFL context. “Frontiers in Psychology”, No 13, 1049401. DOI: https://doi.org/10.3389/fpsyg.2022.1049401
John O.P., Srivastava S. (1999), The Big Five trait taxonomy: History, measurement, and theoretical perspectives, (in:) Pervin L.A., John O.P. (eds.), Handbook of personality: Theory and research (2nd ed.). New York: Guilford Press, pp. 102–138.
John O.P, Naumann L., Soto C. (2008), Paradigm shift to the integrative Big Five trait taxonomy: History, measurement, and conceptual issues, (in:) John O., Robins R., Pervin L. (eds.), Handbook of personality: Theory and research (3rd ed.). The Guilford Press, pp. 114–158.
Karataş F. et al. (2024), Incorporating AI in foreign language education: An investigation into ChatGPT’s effect on foreign language learners. “Education and Information Technologies”, No 29, pp. 19343–19366. DOI: https://doi.org/10.1007/s10639-024-12574-6
Karataş F., Yüce E. (2024), AI and the future of teaching: Preservice teachers’ reflections on the use of artificial intelligence in open and distributed learning. “The International Review of Research in Open and Distributed Learning”, No 25(3), pp. 304–325. DOI: https://doi.org/10.19173/irrodl.v25i3.7785
Kaya F. et al. (2024), The roles of personality traits, AI anxiety, and demographic factors in attitudes toward artificial intelligence, “International Journal of Human–Computer Interaction”, No 40(2), pp. 497–514. DOI: https://doi.org/10.1080/10447318.2022.2151730
Kieslich K., Lünich M., Marcinkowski F. (2021), The threats of artificial intelligence scale (TAI): Development, measurement and test over three application domains. “International Journal of Social Robotics”, No 13, pp. 1563–1577. DOI: https://doi.org/10.1007/s12369-020-00734-w
Kim H-Y. (2013), Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. “Restorative Dentistry and Endodontics”, No 38, pp. 52–54. DOI: https://doi.org/10.5395/rde.2013.38.1.52
Kim J., Lee H., Cho Y. (2022), Learning design to support student-AI collaboration: perspectives of leading teachers for AI in education. “Education and Information Technologies”, No 27, pp. 6069–6104. DOI: https://doi.org/10.1007/s10639-021-10831-6
Kline R.B. (2004), Principles and practice of structural equation modeling (2nd ed.). New York: Guilford Press.
Lei Ma, Zhang Z., Zhang N. (2018), Ethical dilemma of artificial intelligence and its research progress. IOP Conference Series: Materials Science and Engineering, No 392(6), pp.1–4. Online: https://iopscience.iop.org/article/10.1088/1757-899X/392/6/062188/pdf [Accessed 23.11.2024]. DOI: https://doi.org/10.1088/1757-899X/392/6/062188
Lewandowsky S., Mundy M., Tan G. (2000), The dynamics of trust: Comparing humans to automation. “Journal of Experimental Psychology Applied, No 6(2), pp. 104–123. DOI: https://doi.org/10.1037//1076-898X.6.2.104
Loeckx J. (2016), Blurring boundaries in education: Context and impact of MOOCs. “The International Review of Research in Open and Distributed Learning”, No 17(3), pp. 92–121. DOI: https://doi.org/10.19173/irrodl.v17i3.2395
Luckin R., Holmes W. (2016), Intelligence unleashed: An argument for AI in education. London, UK: UCL Knowledge Lab. Online: https://www.pearson.com/content/dam/corporate/global/pearson-dot-com/files/innovation/Intelligence-Unleashed-Publication.pdf [Accessed 23.11.2024].
Matthews G. et al. (2021), Evolution and revolution: Personality research for the coming world of robots, artificial intelligence, and autonomous systems. “Personality and Individual Differences”, No 169, 109969. DOI: https://doi.org/10.1016/j.paid.2020.109969
McCrae R., Costa P. (1987), Validation of the five factor model of personality across instruments and observers. “Journal of Personality and Social Psychology”, No 13, pp. 653–665. DOI: https://doi.org/10.1037/0022-3514.52.1.81
McCrae R., Costa P. (1995), Trait explanations in personality psychology. “European Journal of Personality”, No 9, pp. 231–252. DOI: https://doi.org/10.1002/per.2410090402
Mischel W. (1968), Personality and assessment. New York: Wiley.
Oke O., Dashty J., Cavus N. (2023), The impact of artificial intelligence in foreign language learning using learning managements systems: A Systematic Literature Review. “Information Technologies and Learning Tools”, No 95(3), pp. 215–228. DOI: https://doi.org/10.33407/itlt.v95i3.5233
Oleś P. (2000), Kontrowersje wokół “Wielkiej Piątki”. “Psychological Journal”, No 6(1-2), pp. 7–18.
Omrani N. et al. (2022), To trust or not to trust? An assessment of trust in AI-based systems: Concerns, ethics and contexts. “Technological Forecasting and Social Change”, No 181, 121763. DOI: https://doi.org/10.1016/j.techfore.2022.121763
Ozbey, F., Yasa, Y. (2025), The relationships of personality traits on perceptions and attitudes of dentistry students towards AI. “BMC Medical Education”, No 25(1), pp. 1–8. DOI: https://doi.org/10.1186/s12909-024-06630-5
Park, J., Woo, S.E. (2022), Who likes artificial intelligence? Personality predictors of attitudes toward artificial intelligence. “The Journal of Psychology”, No 1(156), pp. 68–94. DOI: https://doi.org/10.1080/00223980.2021.2012109
Pedro F. et al. (2019), Artificial intelligence in education: Challenges and opportunities for sustainable development. UNESCO Digital Library. Online: https://unesdoc.unesco.org/ark:/48223/pf0000366994 [Accessed 23.11.2024].
Riedl R. (2022), Is trust in artificial intelligence systems related to user personality? Review of empirical evidence and future research directions. “Electronic Markets”, No 32, pp.2021–2051. DOI: https://doi.org/10.1007/s12525-022-00594-4
Roehrick K.C., Vaid S.S., Harari G.M. (2023), Situating smartphones in daily life: Big Five traits and contexts associated with young adults’ smartphone use. “Journal of Personality and Social Psychology”, No 125(5), pp. 1096–1118. DOI: https://doi.org/10.1037/pspp0000478
Saucier G. (1994), Mini-markers: A brief version of Goldberg’s unipolar Big-Five markers. “Journal of Personality Assessment”, No 63, pp. 506–516. DOI: https://doi.org/10.1207/s15327752jpa6303_8
Seldon A., Abidoye O. (2018), The fourth education revolution - Will artificial intelligence liberate or infantalise humanity. Buckingham, UK: University of Buckingham Press.
Selwyn N. (2022), The future of AI and education: Some cautionary notes. “European Journal of Education”, No 57, pp. 620–631. DOI: https://doi.org/10.1111/ejed.12532
Sharan N., Romano D. (2020), The effects of personality and locus of control on trust in humans versus artificial intelligence. “Heliyon”, No 6(8), e04572. DOI: https://doi.org/10.1016/j.heliyon.2020.e04572
Soto C. (2019), How replicable are links between personality traits and consequential life outcomes? The life outcomes of personality replication project. “Psychological Science”, No 30(5), pp. 711–727. DOI: https://doi.org/10.1177/0956797619831612
Stein J.P. et al. (2024), Attitudes towards AI: measurement and associations with personality. “Scientific Reports”, No 14, 2909. DOI: https://doi.org/10.1038/s41598-024-53335-2
Strelau J. (2020), Różnice indywidualne. Historia – determinanty – zastosowania. Warszawa: Wydawnictwo Naukowe Scholar.
Thinh N., Hai N., Tho T. (2020), The influential role of robot in second language classes based on artificial intelligence. “International Journal of Mechanical Engineering and Robotics Research”, No 9(9), pp. 1306–1311. DOI: https://doi.org/10.18178/ijmerr.9.9.1306-1311
Wang Y.Y., Wang Y.S. (2019), Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. “Interactive Learning Environments”, No 30(4), pp. 619–634. DOI: https://doi.org/10.1080/10494820.2019.1674887
Zaghlool Z., Khasawneh M. (2023), Incorporating the impacts and limitations of AI-driven feedback, evaluation, and real-time conversation tools in foreign language learning. “Migration Letters”, No 20(7), pp. 1071–1083. Online: https://migrationletters.com/index.php/ml/article/view/4863/3387 [Accessed 23.11.2024].
Zhai X. et al. (2021), A review of artificial intelligence (AI) in education from 2010 to 2020. “Complexity”, 2021(6), pp. 1–18.
Zhang, Y. et al. (2023), Moral judgments of human vs. AI agents in moral dilemmas. “Behavioral Sciences”, No 13(181), pp. 1–14. DOI: https://doi.org/10.3390/bs13020181
Zhang Z., Chen Z., Xu L. (2022), Artificial intelligence and moral dilemmas: Perception of ethical decision-making in AI. “Journal of Experimental Social Psychology”, No 101, 104327. DOI: https://doi.org/10.1016/j.jesp.2022.104327
Lizenz
Copyright (c) 2025 Czesław Kiński, Bartosz Kiński, Agata Przyborowska

Dieses Werk steht unter der Lizenz Creative Commons Namensnennung - Keine Bearbeitungen 4.0 International.
Autoren:
Die Autoren der zur Veröffentlichung in der Zeitschrift Neofilolog angenommenen Texte sind verpflichtet, den Vertrag über die Erteilung einer kostenlosen Lizenz für die Werke mit der Verpflichtung zur Erteilung einer Sublizenz CC auszufüllen, zu unterzeichnen und an die Adresse der Redaktion zurückzusenden.
Gemäß Vertrag erteilen die Autoren auf die in der Zeitschrift Neofilolog veröffentlichten Texte der Adam-Mickiewicz-Universität in Poznań eine nicht exklusive und kostenlose Lizenz und erlauben die Verwendung der Sublizenz Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0).
Die Autoren behalten das Recht zur weiteren freien Verfügung über das Werk.
Benutzer:
Interessierte Onlinebenutzer dürfen die seit 2017 veröffentlichten Werke unter folgenden Bedingungen nutzen:
- Anerkennung der Urheberschaft - die Verpflichtung, zusammen mit dem verbreiteten Werk Informationen über die Urheberschaft, den Titel, die Quelle (Links zum Originalwerk, DOI) und die Lizenz selbst bereitzustellen;
- ohne Schaffung abgeleiteter Werke - das Werk muss in seiner ursprünglichen Form erhalten bleiben, ohne Zustimmung des Autors dürfen keine Studien, beispielsweise Übersetzungen, verbreitet werden.
Die Urheberrechte aller veröffentlichen Texte sind vorbehalten.
Sonstige:
Die Adam-Mickiewicz-Universität in Poznań behält das Recht auf die Zeitschrift als Gesamtheit (Layout, Grafik, Titel, Umschlagsprojekt, Logo usw.).
